Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(9): 5430-5439, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35435670

RESUMO

Alkaline gases such as NH3 and amines play important roles in neutralizing acidic particles in the atmosphere. Here, two common gaseous amines (dimethylamine (DMA) and trimethylamine (TMA)), NH3, and their corresponding ions in PM2.5 were measured semicontinuously using an ambient ion monitor-ion chromatography (AIM-IC) system in marine air during a round-trip cruise of approximately 4000 km along the coastline of eastern China. The concentrations of particulate DMA, detected as DMAH+, varied from <4 to 100 ng m-3 and generally decreased with increasing atmospheric NH3 concentrations. Combining observations with thermodynamic equilibrium calculations using the extended aerosol inorganics model (E-AIM) indicated that the competitive uptake of DMA against NH3 on acidic aerosols generally followed thermodynamic equilibria and appeared to be sensitive to DMA/NH3 molar ratios, resulting in molar ratios of DMAH+ to DMA + DMAH+ of 0.31 ± 0.16 (average ± standard deviation) at atmospheric NH3 concentrations over 1.8 µg m-3 (with a corresponding DMA/NH3 ratio of (1.8 ± 1.0) × 10-3), 0.80 ± 0.15 at atmospheric NH3 concentrations below 0.3 µg m-3 (with a corresponding DMA/NH3 ratio of (1.3 ± 0.6) × 10-2), and 0.56 ± 0.19 in the remaining cases. Particulate TMA concentrations, detected as TMAH+, ranged from <2 to 21 ng m-3 and decreased with increasing concentrations of atmospheric NH3. However, TMAH+ was depleted concurrently with the formation of NH4NO3 under low concentrations of atmospheric NH3, contradictory to the calculated increase in the equilibrated concentration of TMAH+ by the E-AIM.


Assuntos
Poluentes Atmosféricos , Amônia , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera , Dimetilaminas/análise , Monitoramento Ambiental , Gases/química , Metilaminas/análise , Material Particulado/análise
2.
Environ Sci Technol ; 56(3): 1605-1614, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35023733

RESUMO

Glyoxal is an important precursor of aqueous secondary organic aerosol (aqSOA). Its photooxidation to form organic acids and oligomers and reactions with reduced nitrogen compounds to form brown carbon (BrC) have been extensively investigated separately, although these two types of reactions can occur simultaneously during the daytime. Here, we examine the reactions of glyoxal during photooxidation and BrC formation in premixed NH4NO3 + Glyoxal droplets. We find that nitrate photolysis and photosensitization can enhance the decay rates of glyoxal by a factor of ∼5 and ∼6 compared to those under dark, respectively. A significantly enhanced glyoxal decay rate by a factor of ∼12 was observed in the presence of both nitrate photolysis and photosensitization. Furthermore, a new organic phase was formed in irradiated NH4NO3 + Glyoxal droplets, which had no noticeable degradation under prolonged photooxidation. It was attributed to the imidazole oxidation mediated by nitrate photolysis and/or photosensitization. The persistent organic phase suggests the potential to contribute to SOA formation in ambient fine particles. This study highlights that glyoxal photooxidation mediated by nitrate photolysis and photosensitization can significantly enhance the atmospheric sink of glyoxal, which may partially narrow the gap between model predictions and field measurements of ambient glyoxal concentrations.

3.
Small ; 17(50): e2103052, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34719844

RESUMO

Manganese dioxide (MnO2 ), with naturally abundant crystal phases, is one of the most active candidates for toluene degradation. However, it remains ambiguous and controversial of the phase-activity relationship and the origin of the catalytic activity of these multiphase MnO2 . In this study, six types of MnO2 with crystal phases corresponding to α-, ß-, γ-, ε-, λ-, and δ-MnO2 are prepared, and their catalytic activity toward ozone-assisted catalytic oxidation of toluene at room temperature are studied, which follow the order of δ-MnO2  > α-MnO2  > ε-MnO2  > γ-MnO2  > λ-MnO2  > ß-MnO2 . Further investigation of the specific oxygen species with the toluene oxidation activity indicates that high catalytic activity of MnO2 is originated from the rich oxygen vacancy and the strong mobility of oxygen species. This work illustrates the important role of crystal phase in determining the oxygen vacancies' density and the mobility of oxygen species, thus influencing the catalytic activity of MnO2 catalysts, which sheds light on strategies of rational design and synthesis of multiphase MnO2 catalysts for volatile organic pollutants' (VOCs) degradation.


Assuntos
Nanoestruturas , Ozônio , Catálise , Compostos de Manganês , Óxidos , Tolueno
4.
Environ Sci Technol ; 55(23): 15715-15723, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34812628

RESUMO

Gaseous nitrous acid (HONO) has the potential to greatly contribute to the atmospheric oxidation capacity. Increased attention has been paid to in-particle nitrite or nitrous acid, N(III), as one of the HONO sources. However, sources and formation mechanisms of N(III) remain uncertain. Here, we study a much less examined reaction of Fe(II) and nitrate as a source of N(III). The N(III) production was indirectly probed by its multiphase reaction with SO2 for sulfate production. Particles containing nitrate and Fe(III) were irradiated for generating Fe(II). Sulfate production was enhanced by the presence of UV and organic compounds likely because of the enhanced redox cycle between Fe(II) and Fe(III). Sulfate production rate increases with the concentration of iron-organic complexes in nitrate particles. Similarly, higher concentrations of iron-organic complexes yield higher nitrate decay rates. The estimated production rates of N(III) under simulated conditions in our study vary from 0.1 to 3.0 µg m-3 of air h-1. These values are comparable to HONO production rates of 0.2-1.6 ppbv h-1, which fall in the values reported in laboratory and field studies. The present study highlights a synergistic effect of the coexistence of iron-organic complexes and nitrate under irradiation as a source of N(III).


Assuntos
Nitritos , Ácido Nitroso , Compostos Ferrosos , Ferro , Nitratos , Fotólise
5.
ChemSusChem ; 14(19): 3981, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34519414

RESUMO

Invited for this month's cover is the collaborative group of Dr. Carol Sze Ki Lin and Dr. Xiang Wang. The image illustrates the biodegradation of plastics and the potential for plastic waste recycling and valorization to address the plastic waste dilemma. The Minireview itself is available at 10.1002/cssc.202100752.

6.
ChemSusChem ; 14(19): 4103-4114, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34137191

RESUMO

Although fossil-based plastic products have many attractive characteristics, their production has led to severe environmental burdens that require immediate solutions. Despite these plastics being non-natural chemical compounds, they can be degraded and metabolized by some microorganisms, which suggests the potential application of biotechnologies based on the mechanism of plastic biodegradation. In this context, microbe-based strategies for the degradation, recycling, and valorization of plastic waste offer a feasible approach for alleviating environmental challenges created by the accumulation of plastic waste. This Minireview highlights recent advances in the biotechnology-based biodegradation of both traditional polymers and bio-based plastics, focusing on the mechanisms of biodegradation. From an application perspective, this Minireview also summarizes recent progress in the recycling and valorization of plastic waste, which are feasible solutions for tackling the plastic waste dilemma.

7.
Talanta ; 192: 32-39, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30348397

RESUMO

Interest in exhaled breath has grown considerably in recent years, as breath biosampling has shown promise for non-invasive disease diagnosis, therapeutic drug monitoring, and environmental exposure. Real time breath analysis can be accomplished via direct online mass spectrometry (MS)-based methods, which can provide more accurate and detailed data and an enhanced understanding of the temporal evolution of exhaled VOCs in the breath; however, the complicated chemical composition and large raw datasets involved in breath analysis have hindered the discovery of sources contributing to the exhaled VOCs. The positive matrix factorization (PMF) receptor model has been widely used for source apportionment in atmospheric studies. Since the exhaled VOCs contain compounds from various sources, such as alveolar air, mouth air and respiratory dead-space air, PMF may be also helpful for source apportionment of exhaled VOCs in the breath. Thus, this study explores the application of PMF in the pretreatment of direct breath measurement data. The results indicate that (i) endogenous compounds and background contaminants sources can be readily distinguished by PMF in data obtained from replicate measurements of human exhaled breath at single time points (~30 s/measurement), which may benefit both exhalome investigations and the identification of exposure biomarkers; (ii) sources resolved from online measurement data collected over longer periods (1.5 h) can be used to isolate the evolution of exhaled VOCs and investigate processes such as the pharmacokinetics of ketamine and its major metabolites. Therefore, PMF has shown promise for both data processing and subsequent data mining for the ambient MS-based breath analysis.


Assuntos
Testes Respiratórios , Compostos Orgânicos Voláteis/análise , Algoritmos , Biomarcadores/análise , Monitoramento Ambiental , Humanos , Espectrometria de Massas
8.
Phys Chem Chem Phys ; 20(9): 6431-6439, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29443336

RESUMO

Graphite oxide powder was obtained using the modified Hummers' method and characterized using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The XPS results indicated that the epoxy groups were the main functional groups on the graphite oxide powder surface. The graphite oxide powder was then reacted with SO2 and NH3 gases, respectively, at 25 °C. The XPS and ToF-SIMS analyses of the surface of the reacted graphite oxide powder showed that the reactions mainly occurred in the epoxy groups. Bisulfate and amine groups were formed on the surface of the graphite oxide powder after the reactions between the graphite oxide powder and SO2 and NH3 gases. This work demonstrates a new method of removing SO2 and NH3 gases using graphite oxide powder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA