Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38837943

RESUMO

Genomic information is increasingly used to inform medical treatments and manage future disease risks. However, any personal and societal gains must be carefully balanced against the risk to individuals contributing their genomic data. Expanding our understanding of actionable genomic insights requires researchers to access large global datasets to capture the complexity of genomic contribution to diseases. Similarly, clinicians need efficient access to a patient's genome as well as population-representative historical records for evidence-based decisions. Both researchers and clinicians hence rely on participants to consent to the use of their genomic data, which in turn requires trust in the professional and ethical handling of this information. Here, we review existing and emerging solutions for secure and effective genomic information management, including storage, encryption, consent, and authorization that are needed to build participant trust. We discuss recent innovations in cloud computing, quantum-computing-proof encryption, and self-sovereign identity. These innovations can augment key developments from within the genomics community, notably GA4GH Passports and the Crypt4GH file container standard. We also explore how decentralized storage as well as the digital consenting process can offer culturally acceptable processes to encourage data contributions from ethnic minorities. We conclude that the individual and their right for self-determination needs to be put at the center of any genomics framework, because only on an individual level can the received benefits be accurately balanced against the risk of exposing private information.


Assuntos
Genômica , Humanos , Genômica/métodos , Genômica/ética , Segurança Computacional , Computação em Nuvem , Consentimento Livre e Esclarecido
2.
Nature ; 609(7927): 552-559, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045292

RESUMO

Prostate cancer is characterized by considerable geo-ethnic disparity. African ancestry is a significant risk factor, with mortality rates across sub-Saharan Africa of 2.7-fold higher than global averages1. The contributing genetic and non-genetic factors, and associated mutational processes, are unknown2,3. Here, through whole-genome sequencing of treatment-naive prostate cancer samples from 183 ancestrally (African versus European) and globally distinct patients, we generate a large cancer genomics resource for sub-Saharan Africa, identifying around 2 million somatic variants. Significant African-ancestry-specific findings include an elevated tumour mutational burden, increased percentage of genome alteration, a greater number of predicted damaging mutations and a higher total of mutational signatures, and the driver genes NCOA2, STK19, DDX11L1, PCAT1 and SETBP1. Examining all somatic mutational types, we describe a molecular taxonomy for prostate cancer differentiated by ancestry and defined as global mutational subtypes (GMS). By further including Chinese Asian data, we confirm that GMS-B (copy-number gain) and GMS-D (mutationally noisy) are specific to African populations, GMS-A (mutationally quiet) is universal (all ethnicities) and the African-European-restricted subtype GMS-C (copy-number losses) predicts poor clinical outcomes. In addition to the clinical benefit of including individuals of African ancestry, our GMS subtypes reveal different evolutionary trajectories and mutational processes suggesting that both common genetic and environmental factors contribute to the disparity between ethnicities. Analogous to gene-environment interaction-defined here as a different effect of an environmental surrounding in people with different ancestries or vice versa-we anticipate that GMS subtypes act as a proxy for intrinsic and extrinsic mutational processes in cancers, promoting global inclusion in landmark studies.


Assuntos
População Negra , Neoplasias da Próstata , África/etnologia , África Subsaariana/etnologia , Povo Asiático/genética , População Negra/genética , Proteínas de Transporte/genética , China/etnologia , Etnicidade/genética , Europa (Continente)/etnologia , Humanos , Masculino , Mutação , Proteínas Nucleares/genética , Coativador 2 de Receptor Nuclear/genética , Neoplasias da Próstata/genética , RNA Helicases/genética , RNA Longo não Codificante/genética
3.
Genome Med ; 14(1): 100, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045381

RESUMO

BACKGROUND: African ancestry is a significant risk factor for advanced prostate cancer (PCa). Mortality rates in sub-Saharan Africa are 2.5-fold greater than global averages. However, the region has largely been excluded from the benefits of whole genome interrogation studies. Additionally, while structural variation (SV) is highly prevalent, PCa genomic studies are still biased towards small variant interrogation. METHODS: Using whole genome sequencing and best practice workflows, we performed a comprehensive analysis of SVs for 180 (predominantly Gleason score ≥ 8) prostate tumours derived from 115 African, 61 European and four ancestrally admixed patients. We investigated the landscape and relationship of somatic SVs in driving ethnic disparity (African versus European), with a focus on African men from southern Africa. RESULTS: Duplication events showed the greatest ethnic disparity, with a 1.6- (relative frequency) to 2.5-fold (count) increase in African-derived tumours. Furthermore, we found duplication events to be associated with CDK12 inactivation and MYC copy number gain, and deletion events associated with SPOP mutation. Overall, African-derived tumours were 2-fold more likely to present with a hyper-SV subtype. In addition to hyper-duplication and deletion subtypes, we describe a new hyper-translocation subtype. While we confirm a lower TMPRSS2-ERG fusion-positive rate in tumours from African cases (10% versus 33%), novel African-specific PCa ETS family member and TMPRSS2 fusion partners were identified, including LINC01525, FBXO7, GTF3C2, NTNG1 and YPEL5. Notably, we found 74 somatic SV hotspots impacting 18 new candidate driver genes, with CADM2, LSAMP, PTPRD, PDE4D and PACRG having therapeutic implications for African patients. CONCLUSIONS: In this first African-inclusive SV study for high-risk PCa, we demonstrate the power of SV interrogation for the identification of novel subtypes, oncogenic drivers and therapeutic targets. Identifying a novel spectrum of SVs in tumours derived from African patients provides a mechanism that may contribute, at least in part, to the observed ethnic disparity in advanced PCa presentation in men of African ancestry.


Assuntos
Neoplasias da Próstata , População Negra/genética , Carcinogênese/genética , Humanos , Masculino , Mutação , Gradação de Tumores , Proteínas Nucleares/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Repressoras/genética
4.
Sci Adv ; 8(16): eabm5944, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452284

RESUMO

Dogs are uniquely associated with human dispersal and bring transformational insight into the domestication process. Dingoes represent an intriguing case within canine evolution being geographically isolated for thousands of years. Here, we present a high-quality de novo assembly of a pure dingo (CanFam_DDS). We identified large chromosomal differences relative to the current dog reference (CanFam3.1) and confirmed no expanded pancreatic amylase gene as found in breed dogs. Phylogenetic analyses using variant pairwise matrices show that the dingo is distinct from five breed dogs with 100% bootstrap support when using Greenland wolf as the outgroup. Functionally, we observe differences in methylation patterns between the dingo and German shepherd dog genomes and differences in serum biochemistry and microbiome makeup. Our results suggest that distinct demographic and environmental conditions have shaped the dingo genome. In contrast, artificial human selection has likely shaped the genomes of domestic breed dogs after divergence from the dingo.


Assuntos
Canidae , Lobos , Animais , Austrália , Cruzamento , Canidae/genética , Cães , Filogenia , Lobos/genética
6.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32379294

RESUMO

Somatic structural variants (SVs), which are variants that typically impact >50 nucleotides, play a significant role in cancer development and evolution but are notoriously more difficult to detect than small variants from short-read next-generation sequencing (NGS) data. This is due to a combination of challenges attributed to the purity of tumour samples, tumour heterogeneity, limitations of short-read information from NGS and sequence alignment ambiguities. In spite of active development of SV detection tools (callers) over the past few years, each method has inherent advantages and limitations. In this review, we highlight some of the important factors affecting somatic SV detection and compared the performance of seven commonly used SV callers. In particular, we focus on the extent of change in sensitivity and precision for detecting different SV types and size ranges from samples with differing variant allele frequencies and sequencing depths of coverage. We highlight the reasons for why some SV callers perform well in some settings but not others, allowing our evaluation findings to be extended beyond the seven SV callers examined in this paper. As the importance of large SVs become increasingly recognized in cancer genomics, this paper provides a timely review on some of the most impactful factors influencing somatic SV detection that should be considered when choosing SV callers.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Frequência do Gene , Variação Genética , Humanos , Neoplasias/patologia , Análise de Sequência de DNA/métodos
7.
PLoS One ; 15(8): e0238108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32853264

RESUMO

Somatic structural variants are an important contributor to cancer development and evolution. Accurate detection of these complex variants from whole genome sequencing data is influenced by a multitude of parameters. However, there are currently no tools for guiding study design nor are there applications that could predict the performance of somatic structural variant detection. To address this gap, we developed Shiny-SoSV, a user-friendly web-based calculator for determining the impact of common variables on the sensitivity, precision and F1 score of somatic structural variant detection, including choice of variant detection tool, sequencing depth of coverage, variant allele fraction, and variant breakpoint resolution. Using simulation studies, we determined singular and combinatoric effects of these variables, modelled the results using a generalised additive model, allowing structural variant detection performance to be predicted for any combination of predictors. Shiny-SoSV provides an interactive and visual platform for users to easily compare individual and combined impact of different parameters. It predicts the performance of a proposed study design, on somatic structural variant detection, prior to the commencement of benchwork. Shiny-SoSV is freely available at https://hcpcg.shinyapps.io/Shiny-SoSV with accompanying user's guide and example use-cases.


Assuntos
Biologia Computacional/métodos , Variação Genética/genética , Algoritmos , Carcinogênese/genética , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Internet , Neoplasias/genética , Software
8.
Cancers (Basel) ; 12(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392735

RESUMO

BACKGROUND: While critical insights have been gained from evaluating the genomic landscape of metastatic prostate cancer, utilizing this information to inform personalized treatment is in its infancy. We performed a retrospective pilot study to assess the current impact of precision medicine for locally advanced and metastatic prostate adenocarcinoma and evaluate how genomic data could be harnessed to individualize treatment. METHODS: Deep whole genome-sequencing was performed on 16 tumour-blood pairs from 13 prostate cancer patients; whole genome optical mapping was performed in a subset of 9 patients to further identify large structural variants. Tumour samples were derived from prostate, lymph nodes, bone and brain. RESULTS: Most samples had acquired genomic alterations in multiple therapeutically relevant pathways, including DNA damage response (11/13 cases), PI3K (7/13), MAPK (10/13) and Wnt (9/13). Five patients had somatic copy number losses in genes that may indicate sensitivity to immunotherapy (LRP1B, CDK12, MLH1) and one patient had germline and somatic BRCA2 alterations. CONCLUSIONS: Most cases, whether primary or metastatic, harboured therapeutically relevant alterations, including those associated with PARP inhibitor sensitivity, immunotherapy sensitivity and resistance to androgen pathway targeting agents. The observed intra-patient heterogeneity and presence of genomic alterations in multiple growth pathways in individual cases suggests that a precision medicine model in prostate cancer needs to simultaneously incorporate multiple pathway-targeting agents. Our whole genome approach allowed for structural variant assessment in addition to the ability to rapidly reassess an individual's molecular landscape as knowledge of relevant biomarkers evolve. This retrospective oncological assessment highlights the genomic complexity of prostate cancer and the potential impact of assessing genomic data for an individual at any stage of the disease.

9.
Gigascience ; 9(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236524

RESUMO

BACKGROUND: The German Shepherd Dog (GSD) is one of the most common breeds on earth and has been bred for its utility and intelligence. It is often first choice for police and military work, as well as protection, disability assistance, and search-and-rescue. Yet, GSDs are well known to be susceptible to a range of genetic diseases that can interfere with their training. Such diseases are of particular concern when they occur later in life, and fully trained animals are not able to continue their duties. FINDINGS: Here, we provide the draft genome sequence of a healthy German Shepherd female as a reference for future disease and evolutionary studies. We generated this improved canid reference genome (CanFam_GSD) utilizing a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. The GSD assembly is ∼80 times as contiguous as the current canid reference genome (20.9 vs 0.267 Mb contig N50), containing far fewer gaps (306 vs 23,876) and fewer scaffolds (429 vs 3,310) than the current canid reference genome CanFamv3.1. Two chromosomes (4 and 35) are assembled into single scaffolds with no gaps. BUSCO analyses of the genome assembly results show that 93.0% of the conserved single-copy genes are complete in the GSD assembly compared with 92.2% for CanFam v3.1. Homology-based gene annotation increases this value to ∼99%. Detailed examination of the evolutionarily important pancreatic amylase region reveals that there are most likely 7 copies of the gene, indicative of a duplication of 4 ancestral copies and the disruption of 1 copy. CONCLUSIONS: GSD genome assembly and annotation were produced with major improvement in completeness, continuity, and quality over the existing canid reference. This resource will enable further research related to canine diseases, the evolutionary relationships of canids, and other aspects of canid biology.


Assuntos
Cromossomos/genética , Genoma/genética , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos , Animais , Cães , Genômica , Anotação de Sequência Molecular
10.
Nature ; 575(7781): 185-189, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31659339

RESUMO

Anatomically modern humans originated in Africa around 200 thousand years ago (ka)1-4. Although some of the oldest skeletal remains suggest an eastern African origin2, southern Africa is home to contemporary populations that represent the earliest branch of human genetic phylogeny5,6. Here we generate, to our knowledge, the largest resource for the poorly represented and deepest-rooting maternal L0 mitochondrial DNA branch (198 new mitogenomes for a total of 1,217 mitogenomes) from contemporary southern Africans and show the geographical isolation of L0d1'2, L0k and L0g KhoeSan descendants south of the Zambezi river in Africa. By establishing mitogenomic timelines, frequencies and dispersals, we show that the L0 lineage emerged within the residual Makgadikgadi-Okavango palaeo-wetland of southern Africa7, approximately 200 ka (95% confidence interval, 240-165 ka). Genetic divergence points to a sustained 70,000-year-long existence of the L0 lineage before an out-of-homeland northeast-southwest dispersal between 130 and 110 ka. Palaeo-climate proxy and model data suggest that increased humidity opened green corridors, first to the northeast then to the southwest. Subsequent drying of the homeland corresponds to a sustained effective population size (L0k), whereas wet-dry cycles and probable adaptation to marine foraging allowed the southwestern migrants to achieve population growth (L0d1'2), as supported by extensive south-coastal archaeological evidence8-10. Taken together, we propose a southern African origin of anatomically modern humans with sustained homeland occupation before the first migrations of people that appear to have been driven by regional climate changes.


Assuntos
População Negra , Migração Humana/história , Filogenia , Áreas Alagadas , População Negra/genética , População Negra/história , Clima , DNA Mitocondrial , Genoma Mitocondrial/genética , Haplótipos , História Antiga , Humanos , Densidade Demográfica , Chuva , Estações do Ano , África do Sul
11.
BMC Med Genomics ; 12(1): 82, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164124

RESUMO

BACKGROUNDS: Genetic diversity is greatest within Africa, in particular the KhoeSan click-speaking peoples of southern Africa. South African populations represent admixture fractions including differing degrees of African, African-KhoeSan and non-African genetic ancestries. Within the United States, African ancestry has been linked to prostate cancer presentation and mortality. Together with environmental contributions, genetics is a significant risk factor for high-risk prostate cancer, defined by a pathological Gleason score ≥ 8. METHODS: Using genotype array data merged with ancestry informative reference data, we investigate the contribution of African ancestral fractions to high-risk prostate cancer. Our study includes 152 South African men of African (Black) or African-admixed (Coloured) ancestries, in which 40% showed high-risk prostate cancer. RESULTS: Genetic fractions were determined for averaging an equal African to non-African genetic ancestral contribution in the Coloured; we found African ancestry to be linked to high-risk prostate cancer (P-value = 0.0477). Adjusting for age, the associated African ancestral fraction was driven by a significant KhoeSan over Bantu contribution, defined by Gleason score ≥ 8 (P-value = 0.02329) or prostate specific antigen levels ≥20 ng/ml (P-value = 0.03713). Additionally, we observed the mean overall KhoeSan contribution to be increased in Black patients with high-risk (11.8%) over low-risk (10.9%) disease. Linking for the first time KhoeSan ancestry to a common modern disease, namely high-risk prostate cancer, we tested in this small study the validity of using KhoeSan ancestry as a surrogate for identifying potential high-risk prostate cancer risk loci. As such, we identified four loci within chromosomal regions 2p11.2, 3p14, 8q23 and 22q13.2 (P-value = all age-adjusted < 0.01), two of which have previously been associated with high-risk prostate cancer. CONCLUSIONS: Our study suggests that ancient KhoeSan ancestry may be linked to common modern diseases, specifically those of late onset and therefore unlikely to have undergone exclusive selective pressure. As such we show within a uniquely admixed South African population a link between KhoeSan ancestry and high-risk prostate cancer, which may explain the 2-fold increase in presentation in Black South Africans compared with African Americans.


Assuntos
População Negra/genética , Predisposição Genética para Doença/genética , Variação Genética , Neoplasias da Próstata/genética , Loci Gênicos/genética , Técnicas de Genotipagem , Humanos , Masculino , Gradação de Tumores , Neoplasias da Próstata/patologia
12.
Cancer Res ; 78(24): 6736-6746, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217929

RESUMO

: African-American men are more likely than any other racial group to die from prostate cancer. The contribution of acquired genomic variation to this racial disparity is largely unknown, as genomic from Africa is lacking. Here, we performed the first tumor-normal paired deep whole-genome sequencing for Africa. A direct study-matched comparison between African- and European-derived, treatment-naïve, high-risk prostate tumors for 15 cases allowed for further comparative analyses of existing data. Excluding a single hypermutated tumor with 55 mutations per megabase, we observed a 1.8-fold increase in small somatic variants in African- versus European-derived tumors (P = 1.02e-04), rising to 4-fold when compared with published tumor-matched data. Furthermore, we observed an increase in oncogenic driver mutations in African tumors (P = 2.92e-03); roughly 30% of impacted genes were novel to prostate cancer, and 79% of recurrent driver mutations appeared early in tumorigenesis. Although complex genomic rearrangements were less frequent in African tumors, we describe a uniquely hyperduplicated tumor affecting 149 transposable elements. Comparable with African Americans, ERG fusions and PIK3CA mutations were absent and PTEN loss less frequent. CCND1 and MYC were frequently gained, with somatic copy-number changes more likely to occur late in tumorigenesis. In addition to traditional prostate cancer gene pathways, genes regulating calcium ion-ATPase signal transduction were disrupted in African tumors. Although preliminary, our results suggest that further validation and investigation into the potential implications for elevated tumor mutational burden and tumor-initiating mutations in clinically unfavorable prostate cancer can improve patient outcomes in Africa. SIGNIFICANCE: The first whole-genome sequencing study for high-risk prostate cancer in African men allows a simultaneous comparison of ethnic differences relative to European populations and of the influences of the environment relative to African-American men. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/78/24/6736/F1.large.jpg.See related commentary by Huang, p. 6726.


Assuntos
Análise Mutacional de DNA , Genoma Humano , Mutação , Neoplasias da Próstata/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , População Negra , Carcinogênese , Europa (Continente) , Frequência do Gene , Rearranjo Gênico , Mutação em Linhagem Germinativa , Disparidades nos Níveis de Saúde , Humanos , Masculino , Família Multigênica , Mutação de Sentido Incorreto , Metástase Neoplásica , Filogenia , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/etnologia , África do Sul , População Branca , Sequenciamento Completo do Genoma
13.
Genome Res ; 28(5): 726-738, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29618486

RESUMO

Genomic rearrangements are common in cancer, with demonstrated links to disease progression and treatment response. These rearrangements can be complex, resulting in fusions of multiple chromosomal fragments and generation of derivative chromosomes. Although methods exist for detecting individual fusions, they are generally unable to reconstruct complex chained events. To overcome these limitations, we adopted a new optical mapping approach, allowing megabase-length genome maps to be reconstructed and rearranged genomes to be visualized without loss of integrity. Whole-genome mapping (Bionano Genomics) of a well-studied highly rearranged liposarcoma cell line resulted in 3338 assembled consensus genome maps, including 72 fusion maps. These fusion maps represent 112.3 Mb of highly rearranged genomic regions, illuminating the complex architecture of chained fusions, including content, order, orientation, and size. Spanning the junction of 147 chromosomal translocations, we found a total of 28 Mb of interspersed sequences that could not be aligned to the reference genome. Traversing these interspersed sequences using short-read sequencing breakpoint calls, we were able to identify and place 399 sequencing fragments within the optical mapping gaps, thus illustrating the complementary nature of optical mapping and short-read sequencing. We demonstrate that optical mapping provides a powerful new approach for capturing a higher level of complex genomic architecture, creating a scaffold for renewed interpretation of sequencing data of particular relevance to human cancer.


Assuntos
Mapeamento Cromossômico/métodos , Variação Genética , Genoma Humano/genética , Neoplasias/genética , Linhagem Celular Tumoral , Aberrações Cromossômicas , Fusão Gênica , Rearranjo Gênico , Haplótipos , Humanos , Modelos Genéticos , Análise de Sequência de DNA/métodos
14.
Prostate ; 78(1): 25-31, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29134670

RESUMO

BACKGROUND: Mitochondrial genome (mtDNA) content is depleted in many cancers. In prostate cancer, there is intra-glandular as well as inter-patient mtDNA copy number variation. In this study, we determine if mtDNA content can be used as a predictor for prostate cancer staging and outcomes. METHODS: Fresh prostate cancer biopsies from 115 patients were obtained at time of surgery. All cores underwent pathological review, followed by isolation of cancer and normal tissue. DNA was extracted and qPCR performed to quantify the total amount of mtDNA as a ratio to genomic DNA. Differences in mtDNA content were compared for prostate cancer pathology features and disease outcomes. RESULTS: We showed a significantly reduced mtDNA content in prostate cancer compared with normal adjacent prostate tissue (mean difference 1.73-fold, P-value <0.001). Prostate cancer with increased mtDNA content showed unfavorable pathologic characteristics including, higher disease stage (PT2 vs PT3 P-value = 0.018), extracapsular extension (P-value = 0.02) and a trend toward an increased Gleason score (P-value = 0.064). No significant association was observed between changes in mtDNA content and biochemical recurrence (median follow up of 107 months). CONCLUSIONS: Contrary to other cancer types, prostate cancer tissue shows no universally depleted mtDNA content. Rather, the change in mtDNA content is highly variable, mirroring known prostate cancer genome heterogeneity. Patients with high mtDNA content have an unfavorable pathology, while a high mtDNA content in normal adjacent prostate tissue is associated with worse prognosis.


Assuntos
Adenocarcinoma/genética , Variações do Número de Cópias de DNA , DNA Mitocondrial , Genoma Mitocondrial , Próstata/patologia , Neoplasias da Próstata/genética , Adenocarcinoma/patologia , Idoso , Biópsia , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Neoplasias da Próstata/patologia
15.
Oncotarget ; 8(41): 71342-71357, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-29050365

RESUMO

Prostate cancer is a genetic disease. While next generation sequencing has allowed for the emergence of molecular taxonomy, classification is restricted to the nuclear genome. Mutations within the maternally inherited mitochondrial genome are known to impact cancer pathogenesis, as a result of disturbances in energy metabolism and apoptosis. With a higher mutation rate, limited repair and increased copy number compared to the nuclear genome, the clinical relevance of mitochondrial DNA (mtDNA) variation requires deeper exploration. Here we provide a systematic review of the landscape of prostate cancer associated mtDNA variation. While the jury is still out on the association between inherited mtDNA variation and prostate cancer risk, we collate a total of 749 uniquely reported prostate cancer associated somatic mutations. Support exists for number of somatic events, extent of heteroplasmy, and rate of recurrence of mtDNA mutations, increasing with disease aggression. While, the predicted pathogenic impact for recurrent prostate cancer associated mutations appears negligible, evidence exists for carcinogenic mutations impacting the cytochrome c oxidase complex and regulating metastasis through elevated reactive oxygen species production. Due to a lack of lethal cohort analyses, we provide additional unpublished data for metastatic disease. Discussing the advantages of mtDNA as a prostate cancer biomarker, we provide a review of current progress of including elevated mtDNA levels, of a large somatic deletion, acquired tRNAs mutations, heteroplasmy and total number of somatic events (mutational load). We confirm via meta-analysis a significant association between mtDNA mutational load and pathological staging at diagnosis or surgery (p < 0.0001).

16.
Oncotarget ; 8(14): 23588-23602, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28423598

RESUMO

Complex genomic rearrangements are common molecular events driving prostate carcinogenesis. Clinical significance, however, has yet to be fully elucidated. Detecting the full range and subtypes of large structural variants (SVs), greater than one kilobase in length, is challenging using clinically feasible next generation sequencing (NGS) technologies. Next generation mapping (NGM) is a new technology that allows for the interrogation of megabase length DNA molecules outside the detection range of single-base resolution NGS. In this study, we sought to determine the feasibility of using the Irys (Bionano Genomics Inc.) nanochannel NGM technology to generate whole genome maps of a primary prostate tumor and matched blood from a Gleason score 7 (4 + 3), ETS-fusion negative prostate cancer patient. With an effective mapped coverage of 35X and sequence coverage of 60X, and an estimated 43% tumor purity, we identified 85 large somatic structural rearrangements and 6,172 smaller somatic variants, respectively. The vast majority of the large SVs (89%), of which 73% are insertions, were not detectable ab initio using high-coverage short-read NGS. However, guided manual inspection of single NGS reads and de novo assembled scaffolds of NGM-derived candidate regions allowed for confirmation of 94% of these large SVs, with over a third impacting genes with oncogenic potential. From this single-patient study, the first cancer study to integrate NGS and NGM data, we hypothesise that there exists a novel spectrum of large genomic rearrangements in prostate cancer, that these large genomic rearrangements are likely early events in tumorigenesis, and they have potential to enhance taxonomy.


Assuntos
Mapeamento Cromossômico/métodos , Genoma Humano/genética , Variação Estrutural do Genoma , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias da Próstata/genética , Simulação por Computador , DNA de Neoplasias/genética , Estudos de Viabilidade , Deleção de Genes , Rearranjo Gênico , Humanos , Mutação INDEL , Masculino , Pessoa de Meia-Idade , Mutagênese Insercional , Gradação de Tumores , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Reprodutibilidade dos Testes
17.
Prostate ; 76(4): 349-58, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26660354

RESUMO

BACKGROUND: Prostate cancer incidence and mortality rates are significantly increased in African-American men, but limited studies have been performed within Sub-Saharan African populations. As mitochondria control energy metabolism and apoptosis we speculate that somatic mutations within mitochondrial genomes are candidate drivers of aggressive prostate carcinogenesis. METHODS: We used matched blood and prostate tissue samples from 87 South African men (77 with African ancestry) to perform deep sequencing of complete mitochondrial genomes. Clinical presentation was biased toward aggressive disease (Gleason score >7, 64%), and compared with men without prostate cancer either with or without benign prostatic hyperplasia. RESULTS: We identified 144 somatic mtDNA single nucleotide variants (SNVs), of which 80 were observed in 39 men presenting with aggressive disease. Both the number and frequency of somatic mtDNA SNVs were associated with higher pathological stage. CONCLUSIONS: Besides doubling the total number of somatic PCa-associated mitochondrial genome mutations identified to date, we associate mutational load with aggressive prostate cancer status in men of African ancestry.


Assuntos
DNA Mitocondrial/genética , Variação Genética/genética , Genoma Mitocondrial/genética , Neoplasias da Próstata/genética , Idoso , Idoso de 80 Anos ou mais , População Negra , DNA Mitocondrial/química , Predisposição Genética para Doença , Genótipo , Humanos , Calicreínas/sangue , Masculino , Pessoa de Meia-Idade , Mutação/genética , Gradação de Tumores , Polimorfismo de Nucleotídeo Único/genética , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/patologia , África do Sul , População Branca
18.
PLoS One ; 10(3): e0121223, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25807545

RESUMO

The oldest extant human maternal lineages include mitochondrial haplogroups L0d and L0k found in the southern African click-speaking forager peoples broadly classified as Khoesan. Profiling these early mitochondrial lineages allows for better understanding of modern human evolution. In this study, we profile 77 new early-diverged complete mitochondrial genomes and sub-classify another 105 L0d/L0k individuals from southern Africa. We use this data to refine basal phylogenetic divergence, coalescence times and Khoesan prehistory. Our results confirm L0d as the earliest diverged lineage (∼172 kya, 95%CI: 149-199 kya), followed by L0k (∼159 kya, 95%CI: 136-183 kya) and a new lineage we name L0g (∼94 kya, 95%CI: 72-116 kya). We identify two new L0d1 subclades we name L0d1d and L0d1c4/L0d1e, and estimate L0d2 and L0d1 divergence at ∼93 kya (95%CI:76-112 kya). We concur the earliest emerging L0d1'2 sublineage L0d1b (∼49 kya, 95%CI:37-58 kya) is widely distributed across southern Africa. Concomitantly, we find the most recent sublineage L0d2a (∼17 kya, 95%CI:10-27 kya) to be equally common. While we agree that lineages L0d1c and L0k1a are restricted to contemporary inland Khoesan populations, our observed predominance of L0d2a and L0d1a in non-Khoesan populations suggests a once independent coastal Khoesan prehistory. The distribution of early-diverged human maternal lineages within contemporary southern Africans suggests a rich history of human existence prior to any archaeological evidence of migration into the region. For the first time, we provide a genetic-based evidence for significant modern human evolution in southern Africa at the time of the Last Glacial Maximum at between ∼21-17 kya, coinciding with the emergence of major lineages L0d1a, L0d2b, L0d2d and L0d2a.


Assuntos
Evolução Biológica , Genoma Mitocondrial , Filogenia , África Austral , População Negra/genética , DNA Mitocondrial/genética , Feminino , Genética Populacional , Haplótipos , Humanos , Dados de Sequência Molecular
19.
PLoS One ; 9(11): e113284, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25419663

RESUMO

Adaptation of global food systems to climate change is essential to feed the world. Tropical cattle production, a mainstay of profitability for farmers in the developing world, is dominated by heat, lack of water, poor quality feedstuffs, parasites, and tropical diseases. In these systems European cattle suffer significant stock loss, and the cross breeding of taurine x indicine cattle is unpredictable due to the dilution of adaptation to heat and tropical diseases. We explored the genetic architecture of ten traits of tropical cattle production using genome wide association studies of 4,662 animals varying from 0% to 100% indicine. We show that nine of the ten have genetic architectures that include genes of major effect, and in one case, a single location that accounted for more than 71% of the genetic variation. One genetic region in particular had effects on parasite resistance, yearling weight, body condition score, coat colour and penile sheath score. This region, extending 20 Mb on BTA5, appeared to be under genetic selection possibly through maintenance of haplotypes by breeders. We found that the amount of genetic variation and the genetic correlations between traits did not depend upon the degree of indicine content in the animals. Climate change is expected to expand some conditions of the tropics to more temperate environments, which may impact negatively on global livestock health and production. Our results point to several important genes that have large effects on adaptation that could be introduced into more temperate cattle without detrimental effects on productivity.


Assuntos
Adaptação Fisiológica/genética , Bovinos/genética , Mudança Climática , Clima Tropical , Algoritmos , Animais , Cruzamento/métodos , Meio Ambiente , Feminino , Expressão Gênica , Frequência do Gene , Variação Genética , Genoma/genética , Genótipo , Haplótipos , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Seleção Genética
20.
Genome Biol Evol ; 6(10): 2647-53, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25212860

RESUMO

The oldest contemporary human mitochondrial lineages arose in Africa. The earliest divergent extant maternal offshoot, namely haplogroup L0d, is represented by click-speaking forager peoples of southern Africa. Broadly defined as Khoesan, contemporary Khoesan are today largely restricted to the semidesert regions of Namibia and Botswana, whereas archeological, historical, and genetic evidence promotes a once broader southerly dispersal of click-speaking peoples including southward migrating pastoralists and indigenous marine-foragers. No genetic data have been recovered from the indigenous peoples that once sustained life along the southern coastal waters of Africa prepastoral arrival. In this study we generate a complete mitochondrial genome from a 2,330-year-old male skeleton, confirmed through osteological and archeological analysis as practicing a marine-based forager existence. The ancient mtDNA represents a new L0d2c lineage (L0d2c1c) that is today, unlike its Khoe-language based sister-clades (L0d2c1a and L0d2c1b) most closely related to contemporary indigenous San-speakers (specifically Ju). Providing the first genomic evidence that prepastoral Southern African marine foragers carried the earliest diverged maternal modern human lineages, this study emphasizes the significance of Southern African archeological remains in defining early modern human origins.


Assuntos
Fósseis , Genoma Mitocondrial/genética , África , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA