Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(17): 6825-6834, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37072124

RESUMO

Perfluorooctanoic acid (PFOA) is an environmental toxicant exhibiting a years-long biological half-life (t1/2) in humans and is linked with adverse health effects. However, limited understanding of its toxicokinetics (TK) has obstructed the necessary risk assessment. Here, we constructed the first middle-out physiologically based toxicokinetic (PBTK) model to mechanistically explain the persistence of PFOA in humans. In vitro transporter kinetics were thoroughly characterized and scaled up to in vivo clearances using quantitative proteomics-based in vitro-to-in vivo extrapolation. These data and physicochemical parameters of PFOA were used to parameterize our model. We uncovered a novel uptake transporter for PFOA, highly likely to be monocarboxylate transporter 1 which is ubiquitously expressed in body tissues and may mediate broad tissue penetration. Our model was able to recapitulate clinical data from a phase I dose-escalation trial and divergent half-lives from clinical trial and biomonitoring studies. Simulations and sensitivity analyses confirmed the importance of renal transporters in driving extensive PFOA reabsorption, reducing its clearance and augmenting its t1/2. Crucially, the inclusion of a hypothetical, saturable renal basolateral efflux transporter provided the first unified explanation for the divergent t1/2 of PFOA reported in clinical (116 days) versus biomonitoring studies (1.3-3.9 years). Efforts are underway to build PBTK models for other perfluoroalkyl substances using similar workflows to assess their TK profiles and facilitate risk assessments.


Assuntos
Caprilatos , Fluorocarbonos , Humanos , Toxicocinética , Fluorocarbonos/farmacocinética , Medição de Risco , Proteínas de Membrana Transportadoras , Modelos Biológicos
3.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36178255

RESUMO

Lactic acid bacteria (LAB) fermented foods are reported to have potential in managing glycemic control. This systematic review aimed to evaluate the effectiveness of LAB-fermented foods on improving glycemic control in adults with prediabetics or type 2 diabetes mellitus (T2DM). Randomized controlled trials (RCTs) on LAB fermentation-related foods were searched on PubMed, Cochrane, Excerpta Medica database (EMBASE), Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Web of Science. Sixteen RCTs were included, and the results concluded LAB-fermented food had significant effects in HbA1c (Z = 6.24, MD = -0.05, CI: -0.07 to -0.04, p ≤ 0.00001), fasting plasma glucose (Z = 2.50, MD = -0.16, CI: -0.29 to -0.04, p = 0.01) and fasting serum insulin (Z = 2.51, MD = -0.20, CI: -0.35 to -0.04, p = 0.01). There were significant effects on lipid profile, inflammatory markers, and body mass index in secondary analyses. Subgroup analysis suggests LAB-fermented consumption with a longer duration, younger age group and adults with T2DM, had a larger effect size. Clinicians could offer LAB-fermented food as dietary recommendations for prediabetic and diabetic adults. Larger trials are warranted to verify LAB-fermented food benefits on glycemic control. Systematic Review Registration: PROSPERO Registration No. CRD42022295220.

4.
Front Allergy ; 3: 873168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769572

RESUMO

Introduction: Short chain fatty acids (SCFAs) are the main intestinal intermediate and end products of metabolism of dietary fibers/polyphenols by the gut microbiota. The aim of this study was to evaluate the biological implication of stool SCFA profiles determined in the first year of life on the clinical presentation of allergic outcomes in childhood. Methods: From the Growing Up in Singapore Toward healthy Outcomes (GUSTO) cohort, a sub-cohort of 75 participants was recruited. Scheduled questionnaire data was collected for cumulative prevalence of physician-diagnosed eczema, wheezing with the use of nebuliser, and allergen sensitization till the age of 8 years. Stool samples collected at week 3 and months 3, 6 and 12 were quantitated for 9 SCFAs using LC/MS/MS. SCFA data were grouped into lower (below the 25th) and higher (above the 75th percentiles) categories. Generalized Linear Mixed Models was employed to analyse longitudinal association between SCFAs and atopy-related outcomes. Results: Children with lower stool butyric acid levels (≤25th percentile) over the first 3 time points had higher odds ratio (OR) for wheezing (adjOR = 14.6), eczema (adjOR = 13.2), food sensitization (adjOR = 12.3) and combined outcomes of both wheezing and eczema (adjOR = 22.6) till age 8 years, compared to those with higher levels (≥75 percentile). Additionally, lower longitudinal levels of propionic acid (≤25th percentile) over 4 time points in first year of life was associated with recurrent wheezing (≥2 episodes) till 8 years (adjOR = 7.4) (adj p < 0.05). Conclusion: Our results suggest that relatively low levels of gut SCFAs in early life are associated with increased susceptibility to atopic-related outcomes in childhood.

5.
Gut Microbes ; 12(1): 1-22, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33023370

RESUMO

Evidence is accumulating that the establishment of the gut microbiome in early life influences the development of atopic eczema. In this longitudinal study, we used integrated multi-omics analyses to infer functional mechanisms by which the microbiome modulates atopic eczema risk. We measured the functionality of the gut microbiome and metabolome of 63 infants between ages 3 weeks and 12 months with well-defined eczema cases and controls in a sub-cohort from the Growing Up in Singapore Toward healthy Outcomes (GUSTO) mother-offspring cohort. At 3 weeks, the microbiome and metabolome of allergen-sensitized atopic eczema infants were characterized by an enrichment of Escherichia coli and Klebsiella pneumoniae, associated with increased stool D-glucose concentration and increased gene expression of associated virulence factors. A delayed colonization by beneficial Bacteroides fragilis and subsequent delayed accumulation of butyrate and propionate producers after 3 months was also observed. Here, we describe an aberrant developmental trajectory of the gut microbiome and stool metabolome in allergen sensitized atopic eczema infants. The infographic describes an impaired developmental trajectory of the gut microbiome and metabolome in allergen-sensitized atopic eczema (AE) infants and infer its contribution in modulating allergy risk in the Singaporean mother-offspring GUSTO cohort. The key microbial signature of AE is characterized by (1) an enrichment of Escherichia coli and Klebsiella pneumoniae which are associated with accumulation of pre-glycolysis intermediates (D-glucose) via the trehalose metabolic pathway, increased gene expression of associated virulence factors (invasin, adhesin, flagellin and lipopolysaccharides) by utilizing ATP from oxidative phosphorylation and delayed production of butyrate and propionate, (2) depletion of Bacteroides fragilis which resulted in lower expression of immunostimulatory bacterial cell envelope structure and folate (vitamin B9) biosynthesis pathway, and (3) accompanied depletion of bacterial groups with the ability to derive butyrate and propionate through direct or indirect pathways which collectively resulted in reduced glycolysis, butyrate and propionate biosynthesis.


Assuntos
Bacteroidaceae/crescimento & desenvolvimento , Dermatite Atópica/metabolismo , Dermatite Atópica/microbiologia , Enterobacteriaceae/crescimento & desenvolvimento , Microbioma Gastrointestinal , Metaboloma , Alérgenos/imunologia , Bacteroidaceae/metabolismo , Butiratos/metabolismo , Metabolismo dos Carboidratos , Enterobacteriaceae/metabolismo , Enterobacteriaceae/patogenicidade , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Fezes/microbiologia , Feminino , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Glucose/metabolismo , Glicólise , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Propionatos/metabolismo , Transcriptoma , Fatores de Virulência/genética
6.
Clin Pharmacol Ther ; 108(6): 1176-1184, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32767755

RESUMO

Lopinavir/ritonavir, originally developed for treating HIV, is currently undergoing clinical studies for treating the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although recent reports suggest that lopinavir exhibits in vitro efficacy against SARS-CoV-2, it is a highly protein-bound drug and it remains unknown if it reaches adequate in vivo unbound (free) concentrations in lung tissue. We built a physiologically-based pharmacokinetic model of lopinavir/ritonavir in white and Chinese populations. Our aim was to perform pharmacokinetic/pharmacodynamic correlations by comparing simulated free plasma and lung concentration values achieved using different dosing regimens of lopinavir/ritonavir with unbound half-maximal effective concentration (EC50,unbound ) and unbound effective concentration 90% values of lopinavir against SARS-CoV-2. The model was validated against multiple observed clinical datasets for single and repeated dosing of lopinavir/ritonavir. Predicted pharmacokinetic parameters, such as the maximum plasma concentration, area under the plasma concentration-time profile, oral clearance, half-life, and minimum plasma concentration at steady-state were within two-fold of clinical values for both populations. Using the current lopinavir/ritonavir regimen of 400/100 mg twice daily, lopinavir does not achieve sufficient free lung concentrations for efficacy against SARS-CoV-2. Although the Chinese population reaches greater plasma and lung concentrations as compared with whites, our simulations suggest that a significant dose increase from the current clinically used dosing regimen is necessary to reach the EC50,unbound value for both populations. Based on safety data, higher doses would likely lead to QT prolongation and gastrointestinal disorders (nausea, vomiting, and diarrhea), thus, any dose adjustment must be carefully weighed alongside these safety concerns.


Assuntos
Antivirais/farmacocinética , Tratamento Farmacológico da COVID-19 , Lopinavir/farmacocinética , Ritonavir/farmacocinética , Área Sob a Curva , Povo Asiático , Relação Dose-Resposta a Droga , Infecções por HIV/tratamento farmacológico , Meia-Vida , Humanos , Lopinavir/farmacologia , Pulmão/metabolismo , Taxa de Depuração Metabólica , Modelos Biológicos , Ritonavir/farmacologia , SARS-CoV-2 , População Branca
7.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344771

RESUMO

Leber's hereditary optic neuropathy (LHON, MIM#535000) is the most common form of inherited optic neuropathies and mitochondrial DNA-related diseases. The pathogenicity of mutations in genes encoding components of mitochondrial Complex I is well established, but the underlying pathomechanisms of the disease are still unclear. Hypothesizing that oxidative stress related to Complex I deficiency may increase protein S-glutathionylation, we investigated the proteome-wide S-glutathionylation profiles in LHON (n = 11) and control (n = 7) fibroblasts, using the GluICAT platform that we recently developed. Glutathionylation was also studied in healthy fibroblasts (n = 6) after experimental Complex I inhibition. The significantly increased reactive oxygen species (ROS) production in the LHON group by Complex I was shown experimentally. Among the 540 proteins which were globally identified as glutathionylated, 79 showed a significantly increased glutathionylation (p < 0.05) in LHON and 94 in Complex I-inhibited fibroblasts. Approximately 42% (33/79) of the altered proteins were shared by the two groups, suggesting that Complex I deficiency was the main cause of increased glutathionylation. Among the 79 affected proteins in LHON fibroblasts, 23% (18/79) were involved in energetic metabolism, 31% (24/79) exhibited catalytic activity, 73% (58/79) showed various non-mitochondrial localizations, and 38% (30/79) affected the cell protein quality control. Integrated proteo-metabolomic analysis using our previous metabolomic study of LHON fibroblasts also revealed similar alterations of protein metabolism and, in particular, of aminoacyl-tRNA synthetases. S-glutathionylation is mainly known to be responsible for protein loss of function, and molecular dynamics simulations and 3D structure predictions confirmed such deleterious impacts on adenine nucleotide translocator 2 (ANT2), by weakening its affinity to ATP/ADP. Our study reveals a broad impact throughout the cell of Complex I-related LHON pathogenesis, involving a generalized protein stress response, and provides a therapeutic rationale for targeting S-glutathionylation by antioxidative strategies.


Assuntos
Atrofia Óptica Hereditária de Leber/metabolismo , Proteína S/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Idoso , Suscetibilidade a Doenças , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Modelos Moleculares , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/etiologia , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteína S/química , Proteoma , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Adulto Jovem
8.
Mol Cell Proteomics ; 17(10): 2034-2050, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30006487

RESUMO

Although covalent protein binding is established as the pivotal event underpinning acetaminophen (APAP) toxicity, its mechanistic details remain unclear. In this study, we demonstrated that APAP induces widespread protein glutathionylation in a time-, dose- and bioactivation-dependent manner in HepaRG cells. Proteo-metabonomic mapping provided evidence that APAP-induced glutathionylation resulted in functional deficits in energy metabolism, elevations in oxidative stress and cytosolic calcium, as well as mitochondrial dysfunction that correlate strongly with the well-established toxicity features of APAP. We also provide novel evidence that APAP-induced glutathionylation of carnitine O-palmitoyltransferase 1 (CPT1) and voltage-dependent anion-selective channel protein 1 are respectively involved in inhibition of fatty acid ß-oxidation and opening of the mitochondrial permeability transition pore. Importantly, we show that the inhibitory effect of CPT1 glutathionylation can be mitigated by PPARα induction, which provides a mechanistic explanation for the prophylactic effect of fibrates, which are PPARα ligands, against APAP toxicity. Finally, we propose that APAP-induced protein glutathionylation likely occurs secondary to covalent binding, which is a previously unknown mechanism of glutathionylation, suggesting that this post-translational modification could be functionally implicated in drug-induced toxicity.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Metaboloma , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Cátions/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Fenofibrato/farmacologia , Humanos , Metabolômica , Camundongos , Mitocôndrias/metabolismo , Reprodutibilidade dos Testes , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 1 Dependente de Voltagem/metabolismo
9.
Biochemistry ; 56(36): 4871-4878, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28809557

RESUMO

Short chain fatty acids (SCFAs) are postulated to modulate the immune development of neonates via epigenetic regulations such as histone deacetylase (HDAC) inhibition. In the context of atopic diseases, the inhibition of HDAC maintains T-cell homeostasis and induces naïve T-cell differentiation into adaptive Treg, which regulates the production of anti-inflammatory cytokines and suppression of Th2 immune responses. We investigated the structure-inhibition relationships of SCFAs with class I HDAC3 and class IIa HDAC7 using in silico docking simulation and the in vitro human recombinant HDAC inhibition assay. In silico docking simulation demonstrated that the lower binding energy of SCFAs toward HDACs was associated with the longer aliphatic chain length of SCFAs. Conversely, branching of SCFAs increased their binding energies toward both HDAC3 and HDAC7. The in vitro HDAC inhibition assay revealed that SCFAs more potently inhibit HDAC3 than HDAC7, with butyric acid being the most potent HDAC3 inhibitor among SCFAs (IC50 = 0.318 mM). In conclusion, our findings inform novel structural relationships between SCFAs and HDAC3 versus HDAC7. Future investigation of human disposition of SCFAs is important to establish their effects on innate versus adaptive immunity.


Assuntos
Ácidos Graxos Voláteis/química , Histona Desacetilases/metabolismo , Sítios de Ligação , Simulação por Computador , Inibidores de Histona Desacetilases , Histona Desacetilases/química , Humanos , Modelos Químicos , Ligação Proteica , Conformação Proteica
10.
J Pharm Biomed Anal ; 138: 43-53, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28178633

RESUMO

A novel liquid chromatography tandem mass spectrometry (LCMSMS) method for the quantitative measurement of gut microbial-derived short-chain fatty acids (SCFAs) in human infant stool has been developed and validated. Baseline chromatographic resolution was achieved for 12 SCFAs (acetic, butyric, caproic, 2,2-dimethylbutyric, 2-ethylbutyric, isobutyric, isovaleric, 2-methylbutyric, 4-methylvaleric, propionic, pivalic and valeric acids) within an analysis time of 15min. A novel sequential derivatization of endogenous and spiked SCFAs in stool via 12C- and 13C-aniline respectively, facilitated the accurate quantitation of 12C-aniline derivatized endogenous SCFAs based on calibration of exogenously 13C-derivatized SCFAs. Optimized quenching of derivatization agents prior to LCMSMS analysis further reduced to negligible levels the confounding chromatographic peak due to in-line derivatization of unquenched aniline with residual acetic acid present within the LCMS system. The effect of residual acetic acid, a common LCMS modifier, in analysis of SCFAs has not been addressed in previous SCFA assays. For the first time, a total of 9 SCFAs (acetic, butyric, caproic, isobutyric, isovaleric, 2-methylbutyric, 4-methylvaleric, propionic and valeric acids) were detected and quantitated in 107 healthy infant stool samples. The abundance and diversity of SCFAs in infant stool vary temporally from 3 weeks onwards and stabilize towards the end of 12 months. This in turn reflects the maturation of infant SCFA-producing gut microbiota community. In summary, this novel method is applicable to future studies that investigate the biological roles of SCFAs in paediatric health and diseases.


Assuntos
Compostos de Anilina/química , Isótopos de Carbono/química , Cromatografia Líquida/métodos , Ácidos Graxos Voláteis/química , Fezes/química , Espectrometria de Massas em Tandem/métodos , Ácido Acético/química , Humanos , Ácidos Pentanoicos/química
11.
Cancer Chemother Pharmacol ; 79(1): 117-130, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27942916

RESUMO

BACKGROUND: Despite decades of clinical success, tamoxifen therapy is complicated by inter-individual variability due to CYP450 polymorphism and resistance attributed to ERα/HER2 crosstalk. Direct administration of endoxifen shows promise in circumventing obligatory CYP450 bioactivation while maintaining efficacy. Separately, disruption of the crosstalk using probe antagonists against ERα (tamoxifen) and HER2 (e.g., lapatinib) has been explored clinically. However, the efficacy of this combination may be confounded by lapatinib, a potent inactivator of CYP3A4/5 which could negate the bioactivation of tamoxifen to the active metabolite endoxifen. Additionally, in a manner analogous to tamoxifen, endoxifen is similarly not immune to the development of ERα/HER2 crosstalk that could result in resistance. Simultaneous antagonism of ERα and HER2 using endoxifen and lapatinib could overcome these problems. METHODS: Metabolism studies were performed in human liver microsomes to determine the extent of inhibition of tamoxifen bioactivation by lapatinib. Synergism of endoxifen and lapatinib was assessed using the combination index design in a panel of cell models exhibiting either a priori ERα/HER2 crosstalk (BT474) or acquired ERα/HER2 crosstalk (TAM-R and MCF-7/HER2). RESULTS: Lapatinib inhibited tamoxifen bioactivation by up to 1.8-fold. Synergistic activity was uncovered for lapatinib and endoxifen against BT474, TAM-R and MCF-7/HER2 models of ERα/HER2 crosstalk. Western blot confirmed that endoxifen and lapatinib disrupted this crosstalk. CONCLUSION: This forward-looking study extends the success of tamoxifen by exploring the effectiveness of combining the next-generation tamoxifen derivative, endoxifen with an anti-HER2 agent to combat ERα/HER2 crosstalk, and at the same time provides a solution to the predicted pharmacokinetic antagonism between lapatinib and tamoxifen.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/fisiologia , Quinazolinas/farmacologia , Receptor ErbB-2/fisiologia , Tamoxifeno/análogos & derivados , Ativação Metabólica , Linhagem Celular Tumoral , Citocromo P-450 CYP3A/fisiologia , Sinergismo Farmacológico , Feminino , Humanos , Lapatinib , Receptor ErbB-2/antagonistas & inibidores , Tamoxifeno/farmacocinética , Tamoxifeno/farmacologia
12.
Curr Protoc Protein Sci ; 82: 23.2.1-23.2.19, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26521713

RESUMO

The isotope-coded affinity tag (ICAT) technique has been applied to measure pairwise changes in protein expression through differential stable isotopic labeling of proteins or peptides followed by identification and quantification using a mass spectrometer. Changes in protein expression are observed when the identical peptide from each of two biological conditions is identified and a difference is detected in the measurements comparing the peptide labeled with the heavy isotope to the one with a normal isotopic distribution. This approach allows the simultaneous comparison of the expression of many proteins between two different biological states (e.g., yeast grown on galactose versus glucose, or normal versus cancer cells). Due to the cysteine-specificity of the ICAT reagents, the ICAT technique has also been applied to perform relative quantitation of cysteine redox modifications such as oxidation and nitrosylation. This unit describes both protein quantitation and profiling of cysteine redox modifications using the ICAT technique.


Assuntos
Cisteína/análise , Cisteína/química , Marcação por Isótopo/métodos , Proteômica/métodos , Oxirredução , Espectrometria de Massas em Tandem/métodos
13.
Drug Metab Rev ; 47(1): 21-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25639891

RESUMO

Mechanism-based inactivation (MBI) of CYP450 enzymes is a unique form of inhibition in which the enzymatic machinery of the victim is responsible for generation of the reactive metabolite. This precondition sets up a time-dependency for the inactivation process, a hallmark feature that characterizes all MBI. Yet, MBI itself is a complex biochemical phenomenon that operates in different modes, namely, covalent binding to apoprotein, covalent binding of the porphyrin group and also complexation of the catalytic iron. Using lapatinib as a recent example of toxicological interest, we present an example of a mixed-function MBI that can confound clinical drug-drug interactions manifestation. Lapatinib exhibits both covalent binding to the apoprotein and formation of a metabolite-intermediate complex in an enzyme-selective manner (CYP3A4 versus CYP3A5), each with different reactive metabolites. The clinical implication of this effect is also contingent upon genetic polymorphisms of the enzyme involved as well as the co-administration of other substrates, inhibitors or inducers, culminating in drug-drug interactions. This understanding recapitulates the importance of applying isoform-specific mechanistic investigations to develop customized strategies to manage such outcomes.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Quinazolinas/metabolismo , Animais , Humanos , Lapatinib , Inibidores de Proteínas Quinases/química , Quinazolinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA