Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 113(1): 214-227, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074434

RESUMO

PURPOSE: Our purpose was to investigate whether liver stereotactic body radiation therapy treatment planning can be harmonized across different treatment planning systems, delivery techniques, and institutions by using a specific prescription method and to minimize the knowledge gap concerning intersystem and interuser differences. We provide best practice guidelines for all used techniques. METHODS AND MATERIALS: A multiparametric specification of target dose (gross target volume [GTV]D50%, GTVD0.1cc, GTVV90%, planning target volume [PTV]V70%) with a prescription dose of GTVD50% = 3 × 20 Gy and organ-at-risk (OAR) limits were distributed with computed tomography and structure sets from 3 patients with liver metastases. Thirty-five institutions provided 132 treatment plans using different irradiation techniques. These plans were first analyzed for target and OAR doses. Four different renormalization methods were performed (PTVDmin, PTVD98%, PTVD2%, PTVDmax). The resulting 660 treatments plans were evaluated regarding target doses to study the effect of dose renormalization to different prescription methods. A relative scoring system was used for comparisons. RESULTS: GTVD50% prescription can be performed in all systems. Treatment plan harmonization was overall successful, with standard deviations for Dmax, PTVD98%, GTVD98%, and PTVDmean of 1.6, 3.3, 1.9, and 1.5 Gy, respectively. Primary analysis showed 55 major deviations from clinical goals in 132 plans, whereas in only <20% of deviations GTV/PTV dose was traded for meeting OAR limits. GTVD50% prescription produced the smallest deviation from target planning objectives and between techniques, followed by the PTVDmax, PTVD98%, PTVD2%, and PTVDmin prescription. Deviations were significant for all combinations but for the PTVDmax prescription compared with GTVD50% and PTVD98%. Based on the various dose prescription methods, all systems significantly differed from each other, whereas GTVD50% and PTVD98% prescription showed the least difference between the systems. CONCLUSIONS: This study showed the feasibility of harmonizing liver stereotactic body radiation therapy treatment plans across different treatment planning systems and delivery techniques when a sufficient set of clinical goals is given.


Assuntos
Neoplasias Hepáticas , Radiocirurgia , Radioterapia de Intensidade Modulada , Benchmarking , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
2.
Strahlenther Onkol ; 197(7): 622-632, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33245378

RESUMO

PURPOSE: To examine the equivalent uniform dose (EUD) formalism using the universal survival curve (USC) applicable to high-dose stereotactic body radiotherapy (SBRT). MATERIALS AND METHODS: For nine non-small-cell carcinoma cell (NSCLC) lines, the linear-quadratic (LQ) and USC models were used to calculate the EUD of a set of hypothetical two-compartment tumor dose-volume histogram (DVH) models. The dose was varied by ±5%, ±10%, and ±20% about the prescription dose (60 Gy/3 fractions) to the first compartment, with fraction volume varying from 1% and 5% to 30%. Clinical DVHs of 21 SBRT treatments of NSCLC prescribed to the 70-83% isodose lines were also considered. The EUD of non-standard SBRT dose fractionation (EUDSBRT) was further converted to standard fractionation of 2 Gy (EUDCFRT) using the LQ and USC models to facilitate comparisons between different SBRT dose fractionations. Tumor control probability (TCP) was then estimated from the LQ- and USC-EUDCFRT. RESULTS: For non-standard SBRT fractionation, the deviation of the USC- from the LQ-EUDSBRT is largely limited to 5% in the presence of dose variation up to ±20% to fractional tumor volume up to 30% in all NSCLC cell lines. Linear regression with zero constant yielded USC-EUDSBRT = 0.96â€¯× LQ-EUDSBRT (r2 = 0.99) for the clinical DVHs. Converting EUDSBRT into standard 2­Gy fractions by the LQ formalism produced significantly larger EUDCFRT than the USC formalism, particularly for low [Formula: see text] ratios and large fraction dose. Simplified two-compartment DVH models illustrated that both the LQ- and USC-EUDCFRT values were sensitive to cold spot below the prescription dose with little volume dependence. Their deviations were almost constant for up to 30% dose increase above the prescription. Linear regression with zero constant yielded USC-EUDCFRT = 1.56â€¯× LQ-EUDCFRT (r2 = 0.99) for the clinical DVHs. The clinical LQ-EUDCFRT resulted in median TCP of almost 100% vs. 93.8% with USC-EUDCFRT. CONCLUSION: A uniform formalism of EUD should be defined among the SBRT community in order to apply it as a single metric for dose reporting and dose-response modeling in high-dose-gradient SBRT because its value depends on the underlying cell survival model and the model parameters. Further investigations of the optimal formalism to derive the EUD through clinical correlations are warranted.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Algoritmos , Fracionamento da Dose de Radiação , Humanos , Modelos Lineares , Radiocirurgia , Dosagem Radioterapêutica
3.
Radiat Oncol ; 15(1): 130, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471457

RESUMO

BACKGROUND: PTV concept is presumed to introduce excessive and inconsistent GTV dose in lung stereotactic body radiotherapy (SBRT). That GTV median dose prescription (D50) and robust optimization are viable PTV-free solution (ICRU 91 report) to harmonize the GTV dose was investigated by comparisons with PTV-based SBRT plans. METHODS: Thirteen SBRT plans were optimized for 54 Gy / 3 fractions and prescribed (i) to 95% of the PTV (D95) expanded 5 mm from the ITV on the averaged intensity project (AIP) CT, i.e., PTVITV, (ii) to D95 of PTV derived from the van Herk (VH)'s margin recipe on the mid-ventilation (MidV)-CT, i.e., PTVVH, (iii) to ITV D98 by worst case scenario (WCS) optimization on AIP,i.e., WCSITV and (iv) to GTV D98 by WCS using all 4DCT images, i.e., WCSGTV. These plans were subsequently recalculated on all 4DCT images and deformably summed on the MidV-CT. The dose differences between these plans were compared for the GTV and selected normal organs by the Friedman tests while the variability was compared by the Levene's tests. The phase-to-phase changes of GTV dose through the respiration were assessed as an indirect measure of the possible increase of photon fluence owing to the type-B dose engine. Finally, all plans were renormalized to GTV D50 and all the dosimetric analyses were repeated to assess the relative influences of the SBRT planning concept and prescription method on the variability of target dose. RESULTS: By coverage prescriptions (i) to (iv), significantly smaller chest wall volume receiving ≥30 Gy (CWV30) and normal lung ≥20 Gy (NLV20Gy) were achieved by WCSITV and WCSGTV compared to PTVITV and PTVVH (p > 0.05). These plans differed significantly in the recalculated and summed GTV D2, D50 and D98 (p <  0.05). The inter-patient variability of all GTV dose parameters is however equal between these plans (Levene's tests; p > 0.05). Renormalizing these plans to GTV D50 reduces their differences in GTV D2, and D98 to insignificant level (p > 0.05) and their inter-patient variability of all GTV dose parameters. None of these plans showed significant differences in GTV D2, D50 and D98 between respiratory phases, nor their inter-phase variability is significant. CONCLUSION: Inconsistent GTV dose is not unique to PTV concept but occurs to other PTV-free concept in lung SBRT. GTV D50 renormalization effectively harmonizes the target dose among patients and SBRT concepts of geometric uncertainty management.


Assuntos
Neoplasias Pulmonares/radioterapia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Dosagem Radioterapêutica , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA