Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Infect Public Health ; 15(3): 338-342, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35167995

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has become a major public health threat. This study aims to evaluate the effect of virus mutation activities and policy interventions on COVID-19 transmissibility in Hong Kong. METHODS: In this study, we integrated the genetic activities of multiple proteins, and quantified the effect of government interventions and mutation activities against the time-varying effective reproduction number Rt. FINDINGS: We found a significantly positive relationship between Rt and mutation activities and a significantly negative relationship between Rt and government interventions. The results showed that the mutations that contributed most to the increase of Rt were from the spike, nucleocapsid and ORF1b genes. Policy of prohibition on group gathering was estimated to have the largest impact on mitigating virus transmissibility. The model explained 63.2% of the Rt variability with the R2. CONCLUSION: Our study provided a convenient framework to estimate the effect of genetic contribution and government interventions on pathogen transmissibility. We showed that the S, N and ORF1b protein had significant contribution to the increase of transmissibility of SARS-CoV-2 in Hong Kong, while restrictions of public gathering and suspension of face-to-face class are the most effective government interventions strategies.


Assuntos
COVID-19 , Pandemias , Governo , Humanos , Mutação , Pandemias/prevenção & controle , SARS-CoV-2/genética
2.
J Infect ; 83(6): 671-677, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34627840

RESUMO

The annual epidemics of seasonal influenza is partly attributed to the continued virus evolution. It is challenging to evaluate the effect of influenza virus mutations on evading population immunity. In this study, we introduce a novel statistical and computational approach to measure the dynamic molecular determinants underlying epidemics using effective mutations (EMs), and account for the time of waning mutation advantage against herd immunity by measuring the effective mutation periods (EMPs). Extensive analysis is performed on the sequencing and epidemiology data of H3N2 epidemics in ten regions from season to season. We systematically identified 46 EMs in the hemagglutinin (HA) gene, in which the majority were antigenic sites. Eight EMs were located in immunosubdominant stalk domain, an important target for developing broadly reactive antibodies. The EMs might provide timely information on key substitutions for influenza vaccines antigen design. The EMP suggested that major genetic variants of H3N2 circulated in Southeast Asia for an average duration of 4.5 years (SD 2.4) compared to a significantly shorter 2.0 years (SD 1.0) in temperate regions. The proposed method bridges population epidemics and molecular characteristics of infectious diseases, and would find broad applications in various pathogens mutation estimations.


Assuntos
Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Substituição de Aminoácidos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/epidemiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA