Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 3840, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477698

RESUMO

Resistant tumours are thought to arise from the action of Darwinian selection on genetically heterogenous cancer cell populations. However, simple clonal selection is inadequate to describe the late relapses often characterising luminal breast cancers treated with endocrine therapy (ET), suggesting a more complex interplay between genetic and non-genetic factors. Here, we dissect the contributions of clonal genetic diversity and transcriptional plasticity during the early and late phases of ET at single-cell resolution. Using single-cell RNA-sequencing and imaging we disentangle the transcriptional variability of plastic cells and define a rare subpopulation of pre-adapted (PA) cells which undergoes further transcriptomic reprogramming and copy number changes to acquire full resistance. We find evidence for sub-clonal expression of a PA signature in primary tumours and for dominant expression in clustered circulating tumour cells. We propose a multi-step model for ET resistance development and advocate the use of stage-specific biomarkers.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Antineoplásicos Hormonais/uso terapêutico , Mama/citologia , Mama/patologia , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Microscopia Intravital , Células MCF-7 , Aprendizado de Máquina , Mutação , Células Neoplásicas Circulantes/efeitos dos fármacos , RNA-Seq , Análise de Célula Única , Esferoides Celulares
2.
Methods Mol Biol ; 1975: 211-238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31062312

RESUMO

Single cell experimental techniques now allow us to quantify gene expression in up to thousands of individual cells. These data reveal the changes in transcriptional state that occur as cells progress through development and adopt specialized cell fates. In this chapter we describe in detail how to use our network inference algorithm (PIDC)-and the associated software package NetworkInference.jl-to infer functional interactions between genes from the observed gene expression patterns. We exploit the large sample sizes and inherent variability of single cell data to detect statistical dependencies between genes that indicate putative (co-)regulatory relationships, using multivariate information measures that can capture complex statistical relationships. We provide guidelines on how best to combine this analysis with other complementary methods designed to explore single cell data, and how to interpret the resulting gene regulatory network models to gain insight into the processes regulating cell differentiation.


Assuntos
Diferenciação Celular , Linhagem da Célula , Biologia Computacional/métodos , Redes Reguladoras de Genes , Análise de Célula Única/métodos , Células-Tronco/citologia , Humanos , Transcriptoma
3.
Cell Syst ; 5(3): 251-267.e3, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28957658

RESUMO

While single-cell gene expression experiments present new challenges for data processing, the cell-to-cell variability observed also reveals statistical relationships that can be used by information theory. Here, we use multivariate information theory to explore the statistical dependencies between triplets of genes in single-cell gene expression datasets. We develop PIDC, a fast, efficient algorithm that uses partial information decomposition (PID) to identify regulatory relationships between genes. We thoroughly evaluate the performance of our algorithm and demonstrate that the higher-order information captured by PIDC allows it to outperform pairwise mutual information-based algorithms when recovering true relationships present in simulated data. We also infer gene regulatory networks from three experimental single-cell datasets and illustrate how network context, choices made during analysis, and sources of variability affect network inference. PIDC tutorials and open-source software for estimating PID are available. PIDC should facilitate the identification of putative functional relationships and mechanistic hypotheses from single-cell transcriptomic data.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Análise de Célula Única/métodos , Algoritmos , Animais , Biologia Computacional/métodos , Regulação da Expressão Gênica/genética , Humanos , Análise Multivariada , Software , Transcriptoma/genética
4.
Cell Syst ; 5(3): 268-282.e7, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28957659

RESUMO

Pluripotent stem cells can self-renew in culture and differentiate along all somatic lineages in vivo. While much is known about the molecular basis of pluripotency, the mechanisms of differentiation remain unclear. Here, we profile individual mouse embryonic stem cells as they progress along the neuronal lineage. We observe that cells pass from the pluripotent state to the neuronal state via an intermediate epiblast-like state. However, analysis of the rate at which cells enter and exit these observed cell states using a hidden Markov model indicates the presence of a chain of unobserved molecular states that each cell transits through stochastically in sequence. This chain of hidden states allows individual cells to record their position on the differentiation trajectory, thereby encoding a simple form of cellular memory. We suggest a statistical mechanics interpretation of these results that distinguishes between functionally distinct cellular "macrostates" and functionally similar molecular "microstates" and propose a model of stem cell differentiation as a non-Markov stochastic process.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Animais , Linhagem Celular , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Camadas Germinativas/citologia , Cadeias de Markov , Camundongos , Modelos Estatísticos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/fisiologia , Células-Tronco Pluripotentes/metabolismo , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA