Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 9(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068581

RESUMO

In addition to human cases, cases of COVID-19 in captive animals and pets are increasingly reported. This raises the concern for two-way COVID-19 transmission between humans and animals. Here, we developed a SARS-CoV-2 nucleocapsid protein-based competitive enzyme-linked immunosorbent assay (cELISA) for serodiagnosis of COVID-19 which can theoretically be used in virtually all kinds of animals. We used 187 serum samples from patients with/without COVID-19, laboratory animals immunized with inactive SARS-CoV-2 virions, COVID-19-negative animals, and animals seropositive to other betacoronaviruses. A cut-off percent inhibition value of 22.345% was determined and the analytical sensitivity and specificity were found to be 1:64-1:256 and 93.9%, respectively. Evaluation on its diagnostic performance using 155 serum samples from COVID-19-negative animals and COVID-19 human patients showed a diagnostic sensitivity and specificity of 80.8% and 100%, respectively. The cELISA can be incorporated into routine blood testing of farmed/captive animals for COVID-19 surveillance.

2.
mSphere ; 6(1)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568452

RESUMO

Compared to other human coronaviruses, the genetic diversity and evolution of human coronavirus 229E (HCoV-229E) are relatively understudied. We report a fatal case of COVID-19 pneumonia coinfected with HCoV-229E in Hong Kong. Genome sequencing of SARS-CoV-2 and HCoV-229E from a nasopharyngeal sample of the patient showed that the SARS-CoV-2 strain HK13 was most closely related to SARS-CoV-2 type strain Wuhan-Hu-1 (99.99% nucleotide identity), compatible with his recent history of travel to Wuhan. The HCoV-229E strain HK20-42 was most closely related to HCoV-229E strain SC0865 from the United States (99.86% nucleotide identity). To investigate if it may represent a newly emerged HCoV-229E genotype in Hong Kong, we retrieved 41 archived respiratory samples that tested positive for HCoV-229E from 2004 to 2019. Pneumonia and exacerbations of chronic airway diseases were common among infected patients. Complete RdRp, S, and N gene sequencing of the 41 HCoV-229E strains revealed that our contemporary HCoV-229E strains have undergone significant genetic drift with clustering of strains in chronological order. Two novel genogroups were identified, in addition to previously described genogroups 1 to 4, with recent circulating strains including strain HK20-42 belonging to novel genogroup 6. Positive selection was detected in the spike protein and receptor-binding domain, which may be important for viral evolution at the receptor-binding interphase. Molecular dating analysis showed that HCoV-229E shared the most recent common ancestor with bat and camel/alpaca 229E-related viruses at ∼1884, while camel/alpaca viruses had a relatively recent common ancestor at ∼1999. Further studies are required to ascertain the evolutionary origin and path of HCoV-229E.IMPORTANCE Since its first appearance in the 1960s, the genetic diversity and evolution of human coronavirus 229E (HCoV-229E) have been relatively understudied. In this study, we report a fatal case of COVID-19 coinfected with HCoV-229E in Hong Kong. Genome sequencing revealed that our SARS-CoV-2 strain is highly identical to the SARS-CoV-2 strain from Wuhan, compatible with the patient's recent travel history, whereas our HCoV-229E strain in this study is highly identical to a recent strain in the United States. We also retrieved 41 archived HCoV-229E strains from 2004 to 2019 in Hong Kong for sequence analysis. Pneumonia and exacerbations of chronic airway diseases were common diagnoses among the 41 patients. The results showed that HCoV-229E was evolving in chronological order. Two novel genogroups were identified in addition to the four preexisting HCoV-229E genogroups, with recent circulating strains belonging to novel genogroup 6. Molecular clock analysis dated bat-to-human and bat-to-camelid transmission to as early as 1884.


Assuntos
COVID-19/patologia , Resfriado Comum/patologia , Coronavirus Humano 229E/genética , Variação Genética/genética , SARS-CoV-2/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , COVID-19/mortalidade , Criança , Pré-Escolar , Coinfecção/virologia , Evolução Molecular , Feminino , Genoma Viral/genética , Hong Kong , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Domínios Proteicos/genética , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/genética , Adulto Jovem
3.
Emerg Infect Dis ; 26(12): 2961-2965, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32730733

RESUMO

Severe acute respiratory syndrome coronavirus 2 did not replicate efficiently in 13 bat cell lines, whereas severe acute respiratory syndrome coronavirus replicated efficiently in kidney cells of its ancestral host, the Rhinolophus sinicus bat, suggesting different evolutionary origins. Structural modeling showed that RBD/RsACE2 binding may contribute to the differential cellular tropism.


Assuntos
SARS-CoV-2/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Tropismo Viral/genética , Animais , COVID-19 , Quirópteros/virologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Pandemias , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/genética , Replicação Viral
4.
Emerg Infect Dis ; 26(7): 1542-1547, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32315281

RESUMO

We showed that severe acute respiratory syndrome coronavirus 2 is probably a novel recombinant virus. Its genome is closest to that of severe acute respiratory syndrome-related coronaviruses from horseshoe bats, and its receptor-binding domain is closest to that of pangolin viruses. Its origin and direct ancestral viruses have not been identified.


Assuntos
Betacoronavirus/isolamento & purificação , Quirópteros/virologia , Animais , Betacoronavirus/classificação , Betacoronavirus/genética , Filogenia , Recombinação Genética , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA