RESUMO
A series of metalloligands bearing homoleptic 2,2':6',2''-terpyridine (tpy)-CdII complexes has been successfully synthesized. The formation of ML1 was accomplished through a sequence of Suzuki-Miyaura coupling and complexation reactions, offering an alternative method to produce tpy-based metalloligands under relatively mild conditions. Moreover, the metallomacrocycle C1 and metallocatenane C2 were self-assembled from heteroleptic complexation reactions involving ML1 and suitable counterparts.
RESUMO
The construction and application of metal-organic cages with accessible internal cavities have witnessed rapid development, however, the precise synthesis of complex metal-organic capsules with multiple cavities and achievement of multi-guest encapsulation, and further in-depth comprehension of host-multi-guest recognition remain a great challenge. Just like building LEGO blocks, herein, we have constructed a series of high-order layered metal-organic architectures of generation n (n = 1/2/3/4 is also the number of cavities) by multi-component coordination-driven self-assembly using porphyrin-containing tetrapodal ligands (like plates), multiple parallel-podal ligands (like clamps) and metal ions (like nodes). Importantly, these high-order assembled structures possessed different numbers of rigid and separate cavities formed by overlapped porphyrin planes with specific gaps. The host-guest experiments and convincing characterization proved that these capsules G2-G4 could serve as host structures to achieve multi-guest recognition and unprecedentedly encapsulate up to four C60 molecules. More interestingly, these capsules revealed negative cooperation behavior in the process of multi-guest recognition, which provides a new platform to further study complicated host-multi-guest interaction in the field of supramolecular chemistry.
RESUMO
Alzheimer's disease (AD) is a devastating, progressive neurodegenerative disease affecting the elderly in the world. The pathological hallmark senile plaques are mainly composed of amyloid-ß (Aß), in which the main isoforms are Aß40 and Aß42. Aß is prone to aggregate and ultimately forms amyloid fibrils in the brains of AD patients. Factors that alter the Aß aggregation process have been considered to be potential targets for treatments of AD. Modifier of aggregation 4 (MOAG-4)/small EDRK-rich factor (SERF) was previously selected from a chemical mutagenesis screen and identified as an amyloid modifier that promotes amyloid aggregation for α-synuclein, huntingtin, and Aß40. The interaction and effect of yeast ScSERF on Aß40 were previously described. Here, we examined the human SERF1a effect on Aß40 and Aß42 fibrillization by the Thioflavin T assay and found that SERF1a accelerated Aß fibrillization in a dose-dependent manner without changing the fibril amount and without incorporation. By Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM), we found that SERF1a altered the secondary structures and the morphology of Aß fibrils. The electrospray ionization mass spectrometry (ESI-MS) and analytical ultracentrifugation (AUC) results showed that SERF1a binds to Aß in a 1:1 stoichiometry. Moreover, the NMR study showed that SERF1a interacts with Aß via its N-terminal region. Cytotoxicity assay demonstrated that SERF1a enhanced toxicity of Aß intermediates, and the effect can be rescued by SERF1a antibody. Overall, our study provides the underlying molecular mechanism for the SERF1a effect on Aß fibrillization and facilitates the therapeutic development of AD.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Proteínas do Tecido Nervoso , Idoso , Humanos , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Microscopia Eletrônica de Transmissão , Fragmentos de Peptídeos/química , Proteínas do Tecido Nervoso/metabolismoRESUMO
An operationally simple and green protocol using a NiSO4·6H2O/cationic 2,2'-bipyridyl ligand system as a water-soluble catalyst for the coupling of arylboronic acids with (2-haloallyl)phosphonates and (2-haloallyl)sulfones in water under air was developed. The reaction was performed at 120 °C with arylboronic acids (2 mmol) and (2-haloallyl)phosphonates or sulfones (1 mmol) in the presence of 5 mol % of the Ni catalytic system in a basic aqueous solution for 1 h, giving the corresponding 2-aryl allyl phosphonates or sulfones in good to excellent yields. This reaction features the use of an abundant transition metal as a catalyst in water and exhibits high functional group tolerance, rendering it an eco-friendly procedure.
RESUMO
Quaternary ammonium compounds (QACs) are recognized by the World Health Organization as a useful disinfectant against microbes. The synergistic effect of zwitterionic polymers with QACs as antimicrobial agents rather than QACs alone is yet to be investigated. A potential strategy is the use of covalent bonding to halt the release of minute antibacterials and a hierarchy of functional layers to detain and annihilate microbes. The strategy was tested on a polydimethylsiloxane (PDMS) surface on which quaternized poly(2-dimethylaminoethyl methacrylate) (qDMA+) and sulfobetaine (SBMA) were hierarchically functionalized. Attenuated total reflectance Fourier transform infrared analysis confirmed the quaternization of DMA to qDMA+, grafting of qDMA + on PDMS (PDMS-qDMA+), and grafting of the SBMA overlayer on PDMS-qDMA+ (PDMS-qDMA+-SB). Contact angle measurement showed that PDMS-qDMA + exhibited the lowest contact angle (26.2 ± 2.9°) compared with the hydrophobic PDMS (115.2 ± 1.6°), but that of PDMSqDMA+-SB increased to 56.3 ± 1.3°. The Escherichia coli survival count revealed that PDMS-qDMA+ and PDMS-qDMA+-SB exhibited significantly greater bactericidal ability than PDMS. Confocal laser scanning microscopy revealed fewer dead bacteria on PDMS-qDMA+-SB than on PDMS-qDMA+. Scanning electron microscopy demonstrated that E. coli was disintegrated on the functionalized surface via dual-end cell lysis. To the best of our knowledge, this is the first observation of this type of process. The results confirmed the potent antibacterial and cell disruption activities of the qDMA+ and SBMA modified PDMS surface.
Assuntos
Escherichia coli , Compostos de Amônio Quaternário , Polímeros/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , DimetilpolisiloxanosRESUMO
A rational molecular design strategy is introduced for selective metal-ligand coordination, enabling the quantitative self-assembly of heterobimetallic nano-Saturn complexes. During the sequential multicomponent self-assembly, the CdII ions and organometallic trans-PtII motifs demonstrate preferential binding to specific ligands. The pre-designed directive interactions allow for precise control over the structural characteristics.
RESUMO
Construction of metal-organic cages with unique architecture and guest binding abilities is highly desirable. Herein, we report the synthesis of a distorted trigonal cageâ (1) from a twisted tetratopic ligand (L) and a PdII acceptor. Surprisingly, 1 exhibited a complete structural reorganization of its building units in the presence of C70 and C60 to form guest-encapsulated tetragonal cages, (C70 )2 @2 and (C60 )2 @2, respectively. These guest-bound cages were found to be potential 1 O2 generators, with the former effectively catalyzing two different varieties of 1 O2 -mediated oxidation reactions.
RESUMO
A terpyridine-based supramolecular cage was successfully synthesized by the self-assembly of a hexapodal metal-organic ligand with Zn2+. This metallo-cage exhibited two large parallel planes on the top and bottom with diameters close to 6 nm and a face-to-face distance close to 3.5 nm, thus possessing a large cavity. Electrospray ionization mass spectrometry (ESI-MS), nuclear magnetic resonance (NMR), two-dimensional nuclear Overhauser (2D-NOESY), and diffusion-ordered (DOSY) spectroscopies as well as transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements, unambiguously supported the formation of a supramolecular cage. Furthermore, the corresponding metal-organic gel was felicitously prepared in CH3CN/H2O and displayed good adsorption performance for dye molecules.
RESUMO
An iron-based catalytic system was developed for the cross-coupling of 1-bromoalkynes with terminal alkynes to selectively generate unsymmetrical 1,3-butadiynes in water under air. It was found that a combination of 1-bromoalkynes derived from less acidic terminal alkynes with more acidic counterparts would greatly enhance yields and selectivity for unsymmetrical 1,3-butadiynes. The reaction was also applicable for the synthesis of unsymmetrical 1,3,5-hexatriynes through coupling of 1-bromoalkynes and trimethylsilyl-protected 1,3-butadiynes in a one-pot manner.
RESUMO
Data carriers using spin waves in spintronic and magnonic logic devices offer operation at low power consumption and free of Joule heating yet requiring noncollinear spin structures of small sizes. Heterometallic rings can provide such an opportunity due to the controlled spin-wave transmission within such a confined space. Here, we present a series of {ScnGdn} (n = 4, 6, 8) heterometallic rings, which are the first Sc-Ln clusters to date, with tunable magnetic interactions for spin-wave excitations. By means of time- and temperature-dependent spin dynamics simulations, we are able to predict distinct spin-wave excitations at finite temperatures for Sc4Gd4, Sc6Gd6, and Sc8Gd8. Such a new model is previously unexploited, especially due to the interplay of antiferromagnetic exchange, dipole-dipole interaction, and ring topology at low temperatures, rendering the importance of the latter to spin-wave excitations.
RESUMO
Ligand patterns at the nanoscale are essential in modulating biological recognition and signaling through binding to receptor oligomers. Biocompatible nanoscaffolds that allow precise control of multiple ligand presentation would be of great use in manipulating cellular processes and understanding membrane receptor biology. We have previously developed tri-helix and tetra-helix macrocycle scaffolds based on the Pro9 peptide helix to control ligand arrangements that can selectively target receptor oligomers. A better understanding of the structure of these macromolecules would significantly reduce the difficulty in designing matching ligand positions for target receptors. In this work, we expand the arsenal of ligand patterns by preparing polyproline tri-helix macrocycle scaffolds of different sizes. These synthetic nanoscaffolds composed of peptide helices ranging from Pro6 to Pro12 also allowed us to systematically investigate their properties. With a combination of circular dichroism spectroscopy and ion mobility spectrometry-mass spectrometry (IMS-MS), the measurement for varied sizes of these scaffolds indicated the connecting dihedral angle between both ends of the helix affects the strain in the cyclic scaffold. The experimental collision cross section obtained from IMS-MS favors a propeller model for the helix arrangements. The results not only contribute conformational insights for the polyproline tri-helix system, but also provide precious information for the future design and synthesis of cyclic nanostructures based on peptide helices.
Assuntos
Peptídeos , Dicroísmo Circular , Ligantes , Espectrometria de Massas , Conformação MolecularRESUMO
Based on the predesigned self-selective complexation, metallo-supramolecular P3HT-b-PEO diblock copolymers with varying block ratios were synthesized, and their oriented polymer films generated during solvent evaporation in a 9 T magnetic field were investigated. An anisotropic, ordered layer structure was achieved using [P3HT20 -Zn-PEO107 ] and carefully characterized by polarized optical microscopy (POM), AFM, polarized UV/Vis spectroscopy, and GI-SAXS/WAXS. The PEO-removed [P3HT20 -Zn-PEO107 ] film was obtained after decomplexation with TEA-EDTA under mild conditions, and the selective removal of PEO domains was evidenced by UV/Vis and ATR-FTIR spectroscopy. Anisotropic photoconductivity of the magnetically aligned film was evaluated by flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements. The results indicated that the presence of insulating crystalline PEO segments diminished the photoconductivity along the P3HT backbone direction.
RESUMO
Supramolecular cages/vesicles in biology display sophisticated structures and functions by utilizing a few types of protein subunit quasi-equivalently at distinct geometrical locations. However, synthetic supramolecular cages still lack comparable complexity to reach the high levels of functionality found in natural systems. Herein we report the self-assembly of giant pentagonal supramolecular prisms (molecular weight >50â kDa) with tetratopic pyridinyl subunits serving different geometrical roles within the structures, and their packing into a novel superstructure with unexpected three-fold rotational symmetry in a single two-dimensional layer of crystalline state. The formation of these complicated structures is controlled by both the predetermined angles of the ligands and the mismatched structural tensions created from the multi-layered geometry of the building blocks. Such a self-assembly strategy is extensively used by viruses to increase the volume and complexity of capsids and would provide a new approach to construct highly sophisticated supramolecular architectures.
RESUMO
Nanosized cage-within-cage compounds represent a synergistic molecular self-assembling form of three-dimensional architecture that has received particular research focus. Building multilayered ultralarge cages to simulate complicated virus capsids is believed to be a tough synthetic challenge. Here, we synthesize two large double-shell supramolecular cages by facile self-assembly of presynthesized metal-organic hexatopic terpyridine ligands with metal ions. Differing from the mixture of prisms formed from the inner tritopic ligand, the redesigned metal-organic hexatopic ligands bearing high geometric constraints that led to the exclusive formation of discrete double-shell structures. These two unique nested cages are composed of inner cubes (5.1 nm) and outer huge truncated cubes (12.0 and 13.2 nm) with six large bowl-shape subcages distributed on six faces. The results with molecular weights of 75â¯232 and 77 667 Da were among the largest synthetic cage-in-cage supramolecules reported to date. The composition, size and shape were unambiguously characterized by a combination of 1H NMR, DOSY, ESI-MS, TWIM-MS, TEM, AFM, and SAXS. This work provides an interesting model for functional recognition, delivery, and detection of various guest molecules in the field of supramolecular materials.
RESUMO
Complementary complexation between 2,2':6',2â³-terpyridine (tpy) and 6,6â³-dianthracenyl-substituted tpy in the presence of Zn(II) ions provided an efficient strategy for construction of metallo-supramolecular diblock copolymers. To synthesize well-defined tpy-modified polystyrenes (PSs), an Fe(II) bis(tpy) complex bearing α-bromoester as a metallo-initiator was applied to atom transfer radical polymerization (ATRP) to avoid poisoning the Cu(I) catalyst. Subsequently, a series of tpy-functionalized PSs was obtained after the decomplexation of
RESUMO
A two-ligand system composed of the predesigned multivalent and complementary terpyridine-based ligands was exploited to construct heteroleptic metallo-supramolecules and to investigate the self-assembly mechanism. Molecular stellation of the trimeric hexagon [Cd6L23] gave rise to the exclusive self-assembly of the star hexagon [Cd18L16L33] through complementary ligand pairing between the ditopic and octatopic tectons. To understand how the intermolecular heteroleptic complexation influenced the self-assembly pathway, the star hexagon was truncated into two triangular fragments: [Cd12L13L43] and [Cd12L13L53]. In the self-assembly of [Cd12L13L43], the conformational movements of hexatopic ligand L4 could be regulated by L1 to promote the subsequent coordination event, which was the key step to the successful multicomponent self-assembly. In contrast, the formation of [Cd12L13L53] was hampered by the geometrically mismatched intermediates.
RESUMO
We report here that energy migration during luminescence can be extremely minimized by caging the fluorescent centers in a molecular cluster of [Tb6(µ3-F)8(piv)10(Hpiv)4DMF]·xDMF·yH2O 1. Experimental and theoretical simulations reveal that bonding terbium with fluoride is the key to reducing the non-radiative multi-phonon relaxation processes, which is disparate to the common hydroxy-based lanthanide clusters.
RESUMO
A metal-organic supramolecular nanobelt was synthesized by quantitative self-assembling terpyridine-functionized tetraphenylethylene (TPE) and Cd2+, which only showed a weak emission both in solution or aggregated state. Nevertheless, nanobelt complex could be transferred to a fluorescence turn-on sensor to S2- by taking advantage of the structural transformation from nanobelt to its fluorescent ligand.
RESUMO
Tetrafunctionalized calix[4]resorcinarene cavitands commonly serve as supramolecular scaffolds for construction of coordination-driven self-assembled capsules. However, due to the calix-like shape, the structural diversity of assemblies is mostly restricted to dimeric and hexameric capsules. Previously, we reported a spontaneous heteroleptic complexation strategy based on a pair of self-recognizable terpyridine-based ligands and CdII ions. Building on this complementary ligand pairing system, herein three types of nanocapsules, including a dimeric capsule, a Sierpinski triangular prism, and a cubic star, could be readily obtained through dynamic complexation reactions between a tetratopic cavitand-based ligand and various multitopic counterparts in the presence of CdII ions. The dimeric capsular assemblies display the spacer-length-dependent self-sorting behavior in a four-component system. Moreover, the precise multicomponent self-assembly of a Sierpinski triangular prism and a cubic star possessing three and six cavitand-based motifs, respectively, demonstrates that such self-assembly methodology is able to efficiently enhance architectural complexity for calix[4]resorcinarene-containing metallo-supramolecules.
RESUMO
Gigantic coordination molecules assembled from a large number of metal ions and organic ligands are structurally and functionally challenging to characterize. Here we show that a heterometallic cluster [Ni36Gd102(OH)132(mmt)18(dmpa)18(H2dmpa)24(CH3COO)84(SO4)18(NO3)18(H2O)30]·Br6(NO3)6·(H2O)x·(CH3OH)y, (1, x ≈ 130, y ≈ 60), shaped like a "Star of David", can be synthesized using a "mixed-ligand" and "sulfate-template" strategy. In terms of metal nuclearity number, 1 is the second largest 3d-4f cluster to date. In the solid state, 1 is porous after removing the lattice guests. The N2 adsoption experiment reveals that the BET and Langmuir surface areas are 299.8 and 412.0 cm2 g-1, respectively. CO2 adsorption at 298 K gives the amount of 45 cm3 g-1 for 1. More importantly, 1 is soluble in common organic solvents and exhibits high solution stability revealed by high resolution MALDI-TOF mass spectroscopy, small-angle X-ray scattering (SAXS), and low-dose transmission electron microscopy. The solubility and the potential open metal sites owing to the labile coordinating components prompted us to investigate the photocatalytic properties of 1, which displays high selectivity and efficiency for reduction of CO2 to CO with turnover number and turnover frequency of 29700 and 1.2 s-1, respectively. These values are higher than most catalysts working under the same conditions, presumably due to the strong Ni-CO2 binding effect. In addition, the large percentage of Gd(III) in 1 leads to a large magnetic entropy change (41.3 J·kg-1·K-1) at 2.0 K for ΔH = 7 T.