RESUMO
We present a susceptible-infected-recovered model based on a dynamic flow network that describes the epidemic process on complex metapopulation networks. This model views population regions as interconnected nodes and describes the evolution of each region using a system of differential equations. The next-generation matrix method is used to derive the global basic reproduction number for three cases: a general network with homogeneous infection rates in all regions, a fully connected network, and a star network with heterogeneous infection and recovery rates. For the homogeneous case, we show that this global basic reproduction number is independent of the migration rates between regions. However, the rate of convergence of each region to an equilibrium state exhibits a much larger variance in random (Erdos-Rényi) networks compared to small-scale (Barabási-Albert) networks. For the general heterogeneous case, we report interesting results, namely that the global basic reproduction number decays exponentially with respect to the smallest nonzero Laplacian eigenvalue (algebraic connectivity). Furthermore, we demonstrate both analytically and numerically that as the network's algebraic connectivity increases, either by increasing the average node degree of each region or the global migration rate, the global basic reproduction number decreases and converges to the ratio of the average local infection rate to the average local recovery rate, meaning that the lower bound of the global basic reproduction rate does not equal the mean of local basic reproduction rates.
RESUMO
Vaccination is an important means to fight against the spread of the SARS-CoV-2 virus and its variants. In this work, we propose a general susceptible-vaccinated-exposed-infected-hospitalized-removed (SVEIHR) model and derive its basic and effective reproduction numbers. We set Hong Kong as an example and calculate conditions of herd immunity for multiple vaccines and disease variants. The model shows how the number of confirmed COVID-19 cases in Hong Kong during the second and third waves of the COVID-19 pandemic would have been reduced if vaccination were available then. We then investigate the relationships between various model parameters and the cumulative number of hospitalized COVID-19 cases in Hong Kong for the ancestral, Delta, and Omicron strains. Numerical results demonstrate that the static herd immunity threshold corresponds to one percent of the population requiring hospitalization or isolation at some point in time. We also demonstrate that when the vaccination rate is high, the initial proportion of vaccinated individuals can be lowered while still maintaining the same proportion of cumulative hospitalized/isolated individuals.
Assuntos
COVID-19 , COVID-19/prevenção & controle , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , VacinaçãoRESUMO
Although deterministic compartmental models are useful for predicting the general trend of a disease's spread, they are unable to describe the random daily fluctuations in the number of new infections and hospitalizations, which is crucial in determining the necessary healthcare capacity for a specified level of risk. In this paper, we propose a stochastic SEIHR (sSEIHR) model to describe such random fluctuations and provide sufficient conditions for stochastic stability of the disease-free equilibrium, based on the basic reproduction number that we estimated. Our extensive numerical results demonstrate strong threshold behavior near the estimated basic reproduction number, suggesting that the necessary conditions for stochastic stability are close to the sufficient conditions derived. Furthermore, we found that increasing the noise level slightly reduces the final proportion of infected individuals. In addition, we analyze COVID-19 data from various regions worldwide and demonstrate that by changing only a few parameter values, our sSEIHR model can accurately describe both the general trend and the random fluctuations in the number of daily new cases in each region, allowing governments and hospitals to make more accurate caseload predictions using fewer compartments and parameters than other comparable stochastic compartmental models.
RESUMO
The 2019 novel coronavirus disease (COVID-19) outbreak has become a worldwide problem. Due to globalization and the proliferation of international travel, many countries are now facing local epidemics. The existence of asymptomatic and pre-symptomatic transmissions makes it more difficult to control disease transmission by isolating infectious individuals. To accurately describe and represent the spread of COVID-19, we suggest a susceptible-exposed-infected-hospitalized-removed (SEIHR) model with human migrations, where the "exposed" (asymptomatic) individuals are contagious. From this model, we derive the basic reproduction number of the disease and its relationship with the model parameters. We find that, for highly contagious diseases like COVID-19, when the adjacent region's epidemic is not severe, a large migration rate can reduce the speed of local epidemic spreading at the price of infecting the neighboring regions. In addition, since "infected" (symptomatic) patients are isolated almost immediately, the transmission rate of the epidemic is more sensitive to that of the "exposed" (asymptomatic) individuals. Furthermore, we investigate the impact of various interventions, e.g. isolation and border control, on the speed of disease propagation and the resultant demand on medical facilities, and find that a strict intervention measure can be more effective than closing the borders. Finally, we use some real historical data of COVID-19 caseloads from different regions, including Hong Kong, to validate the modified SEIHR model, and make an accurate prediction for the third wave of the outbreak in Hong Kong.
RESUMO
An earlier article, inspired by overflow models in telecommunication systems with multiple streams of telephone calls, proposed a new analytical model for a network of intensive care units (ICUs), and a new patient referral policy for such networks to reduce the blocking probability of external emergency patients without degrading the quality of service (QoS) of canceled elective operations, due to the more efficient use of ICU capacity overall. In this work, we use additional concepts and insights from traditional teletraffic theory, including resource sharing, trunk reservation, and mutual overflow, to design a new patient referral policy to further improve ICU network efficiency. Numerical results based on the analytical model demonstrate that our proposed policy can achieve a higher acceptance level than the original policy with a smaller number of beds, resulting in improved service for all patients. In particular, our proposed policy can always achieve much lower blocking probabilities for external emergency patients while still providing sufficient service for internal emergency and elective patients. In addition, we provide new accurate and computationally efficient analytical approximations for QoS evaluation of ICU networks using our proposed policy. We demonstrate numerically that our new approximation method yields more accurate, robust and conservative results overall than the traditional approximation. Finally, we demonstrate how our proposed approximation method can be applied to solve resource planning and optimization problems for ICU networks in a scalable and computationally efficient manner.