Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2937, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580628

RESUMO

Rare-earth monopnictides are a family of materials simultaneously displaying complex magnetism, strong electronic correlation, and topological band structure. The recently discovered emergent arc-like surface states in these materials have been attributed to the multi-wave-vector antiferromagnetic order, yet the direct experimental evidence has been elusive. Here we report observation of non-collinear antiferromagnetic order with multiple modulations using spin-polarized scanning tunneling microscopy. Moreover, we discover a hidden spin-rotation transition of single-to-multiple modulations 2 K below the Néel temperature. The hidden transition coincides with the onset of the surface states splitting observed by our angle-resolved photoemission spectroscopy measurements. Single modulation gives rise to a band inversion with induced topological surface states in a local momentum region while the full Brillouin zone carries trivial topological indices, and multiple modulation further splits the surface bands via non-collinear spin tilting, as revealed by our calculations. The direct evidence of the non-collinear spin order in NdSb not only clarifies the mechanism of the emergent topological surface states, but also opens up a new paradigm of control and manipulation of band topology with magnetism.

2.
Science ; 383(6683): 634-639, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330133

RESUMO

The interface between two different materials can show unexpected quantum phenomena. In this study, we used molecular beam epitaxy to synthesize heterostructures formed by stacking together two magnetic materials, a ferromagnetic topological insulator (TI) and an antiferromagnetic iron chalcogenide (FeTe). We observed emergent interface-induced superconductivity in these heterostructures and demonstrated the co-occurrence of superconductivity, ferromagnetism, and topological band structure in the magnetic TI layer-the three essential ingredients of chiral topological superconductivity (TSC). The unusual coexistence of ferromagnetism and superconductivity is accompanied by a high upper critical magnetic field that exceeds the Pauli paramagnetic limit for conventional superconductors at low temperatures. These magnetic TI/FeTe heterostructures with robust superconductivity and atomically sharp interfaces provide an ideal wafer-scale platform for the exploration of chiral TSC and Majorana physics.

3.
Nat Commun ; 14(1): 3744, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353526

RESUMO

Control and understanding of ensembles of skyrmions is important for realization of future technologies. In particular, the order-disorder transition associated with the 2D lattice of magnetic skyrmions can have significant implications for transport and other dynamic functionalities. To date, skyrmion ensembles have been primarily studied in bulk crystals, or as isolated skyrmions in thin film devices. Here, we investigate the condensation of the skyrmion phase at room temperature and zero field in a polar, van der Waals magnet. We demonstrate that we can engineer an ordered skyrmion crystal through structural confinement on the µm scale, showing control over this order-disorder transition on scales relevant for device applications.


Assuntos
Engenharia , Imãs , Temperatura , Fenômenos Físicos , Fenômenos Magnéticos
4.
Phys Rev Lett ; 129(10): 107204, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112444

RESUMO

We report direct visualization of spin-flip transition of the surface layer in antiferromagnet MnBi_{4}Te_{7}, a natural superlattice of alternating MnBi_{2}Te_{4} and Bi_{2}Te_{3} layers, using cryogenic magnetic force microscopy (MFM). The observation of magnetic contrast across domain walls and step edges confirms that the antiferromagnetic order persists to the surface layers. The magnetic field dependence of the MFM images reveals that the surface magnetic layer undergoes a first-order spin-flip transition at a magnetic field that is lower than the bulk transition, in excellent agreement with a revised Mills model. Our analysis suggests no reduction of the order parameter in the surface magnetic layer, implying robust ferromagnetism in the single-layer limit. The direct visualization of surface spin-flip transition not only opens up exploration of surface metamagnetic transitions in layered antiferromagnets, but also provides experimental support for realizing quantized transport in ultrathin films of MnBi_{4}Te_{7} and other natural superlattice topological magnets.

5.
Sci Adv ; 8(12): eabm7103, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35319983

RESUMO

Novel magnetic ground states have been stabilized in two-dimensional (2D) magnets such as skyrmions, with the potential next-generation information technology. Here, we report the experimental observation of a Néel-type skyrmion lattice at room temperature in a single-phase, layered 2D magnet, specifically a 50% Co-doped Fe5GeTe2 (FCGT) system. The thickness-dependent magnetic domain size follows Kittel's law. The static spin textures and spin dynamics in FCGT nanoflakes were studied by Lorentz electron microscopy, variable-temperature magnetic force microscopy, micromagnetic simulations, and magnetotransport measurements. Current-induced skyrmion lattice motion was observed at room temperature, with a threshold current density, jth = 1 × 106 A/cm2. This discovery of a skyrmion lattice at room temperature in a noncentrosymmetric material opens the way for layered device applications and provides an ideal platform for studies of topological and quantum effects in 2D.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA