Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mass Spectrom Rev ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010120

RESUMO

Exploring the chemical content of individual cells not only reveals underlying cell-to-cell chemical heterogeneity but is also a key component in understanding how cells combine to form emergent properties of cellular networks and tissues. Recent technological advances in many analytical techniques including mass spectrometry (MS) have improved instrumental limits of detection and laser/ion probe dimensions, allowing the analysis of micron and submicron sized areas. In the case of MS, these improvements combined with MS's broad analyte detection capabilities have enabled the rise of single-cell and single-organelle chemical characterization. As the chemical coverage and throughput of single-cell measurements increase, more advanced statistical and data analysis methods have aided in data visualization and interpretation. This review focuses on secondary ion MS and matrix-assisted laser desorption/ionization MS approaches for single-cell and single-organelle characterization, which is followed by advances in mass spectral data visualization and analysis.

2.
J Biol Chem ; 298(8): 102254, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35835221

RESUMO

Neuropeptides are a chemically diverse class of cell-to-cell signaling molecules that are widely expressed throughout the central nervous system, often in a cell-specific manner. While cell-to-cell differences in neuropeptides is expected, it is often unclear how exactly neuropeptide expression varies among neurons. Here we created a microscopy-guided, high-throughput single cell matrix-assisted laser desorption/ionization mass spectrometry approach to investigate the neuropeptide heterogeneity of individual neurons in the central nervous system of the neurobiological model Aplysia californica, the California sea hare. In all, we analyzed more than 26,000 neurons from 18 animals and assigned 866 peptides from 66 prohormones by mass matching against an in silico peptide library generated from known Aplysia prohormones retrieved from the UniProt database. Louvain-Jaccard (LJ) clustering of mass spectra from individual neurons revealed 40 unique neuronal populations, or LJ clusters, each with a distinct neuropeptide profile. Prohormones and their related peptides were generally found in single cells from ganglia consistent with the prohormones' previously known ganglion localizations. Several LJ clusters also revealed the cellular colocalization of behaviorally related prohormones, such as an LJ cluster exhibiting achatin and neuropeptide Y, which are involved in feeding, and another cluster characterized by urotensin II, small cardiac peptide, sensorin A, and FRFa, which have shown activity in the feeding network or are present in the feeding musculature. This mass spectrometry-based approach enables the robust categorization of large cell populations based on single cell neuropeptide content and is readily adaptable to the study of a range of animals and tissue types.


Assuntos
Aplysia , Neurônios , Neuropeptídeos , Animais , Aplysia/fisiologia , Sistema Nervoso Central/metabolismo , Neurônios/química , Neurônios/metabolismo , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Análise de Célula Única , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA