Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(6): e0145622, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36287007

RESUMO

Pseudomonas spp. colonize diverse aquatic and terrestrial habitats and produce a wide variety of secondary metabolites, including lipopeptides. However, previous studies have often examined a limited number of lipopeptide-producing strains. In this study, we performed a systematic analysis of lipopeptide production across a wide data set of strains of the Pseudomonas syringae complex (724) by using a combined bioinformatics, mass spectrometry, and phylogenetics approach. The large P. syringae complex, which is composed of 13 phylogroups, is known to produce factins (including syringafactin-like lipopeptides), mycins (including syringomycin-like lipopeptides), and peptins (such as syringopeptins). We found that 80.8% of P. syringae strains produced lipopeptides and that factins were the most frequently produced (by 96% of the producing strains). P. syringae strains were either factin monoproducers or factin, mycin, and peptin coproducers or lipopeptide nonproducers in relation to their phylogenetic group. Our analyses led to the discovery of 42 new lipopeptides, bringing the number of lipopeptides identified in the P. syringae complex to 75. We also highlighted that factins have high structural resemblance and are widely distributed among the P. syringae complex, while mycins and peptins are highly structurally diverse and patchily distributed. IMPORTANCE This study provides an insight into the P. syringae metabolome that emphasizes the high diversity of lipopeptides produced within the P. syringae complex. The production profiles of strains are closely related to their phylogenetic classification, indicating that structural diversification of lipopeptides parallels the phylogeny of this bacterial complex, thereby further illustrating the inherent importance of lipopeptides in the ecology of this group of bacteria throughout its evolutionary history. Furthermore, this overview of P. syringae lipopeptides led us to propose a refined classification that could be extended to the lipopeptides produced by other bacterial groups.


Assuntos
Lipopeptídeos , Pseudomonas syringae , Pseudomonas syringae/genética , Filogenia , Bactérias , Espectrometria de Massas
2.
Pathogens ; 11(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335680

RESUMO

Here we report, for the first time, the occurrence of the bacteria from the species complex Pseudomonas syringae in Iceland. We isolated this bacterium from 35 of the 38 samples of angiosperms, moss, ferns and leaf litter collected across the island from five habitat categories (boreal heath, forest, subalpine and glacial scrub, grazed pasture, lava field). The culturable populations of P. syringae on these plants varied in size across 6 orders of magnitude, were as dense as 107 cfu g-1 and were composed of strains in phylogroups 1, 2, 4, 6, 7, 10 and 13. P. syringae densities were significantly greatest on monocots compared to those on dicots and mosses and were about two orders of magnitude greater in grazed pastures compared to all other habitats. The phylogenetic diversity of 609 strains of P. syringae from Iceland was compared to that of 933 reference strains of P. syringae from crops and environmental reservoirs collected from 27 other countries based on a 343 bp sequence of the citrate synthase (cts) housekeeping gene. Whereas there were examples of identical cts sequences across multiple countries and continents among the reference strains indicating mixing among these countries and continents, the Icelandic strains grouped into monophyletic lineages that were unique compared to all of the reference strains. Based on estimates of the time of divergence of the Icelandic genetic lineages of P. syringae, the geological, botanical and land use history of Iceland, and atmospheric circulation patterns, we propose scenarios whereby it would be feasible for P. syringae to have evolved outside the reach of processes that tend to mix this bacterial complex across the planet elsewhere.

3.
AMB Express ; 10(1): 198, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130970

RESUMO

The damages observed in Tunisian citrus orchards have prompted studies on the Pseudomonas spp. responsible for blast and black pit. Prospective orchards between 2015 and 2017 showed that the diseases rapidly spread geographically and to new cultivars. A screening of Pseudomonas spp. isolated from symptomatic trees revealed their wide diversity according to phylogenetic analysis of their housekeeping rpoD and cts genes. The majority of strains were affiliated to Pseudomonas syringae pv. syringae (Phylogroup PG02b), previously described in Tunisia. However, they exhibited various BOX-PCR fingerprints and were not clonal. This work demonstrated, for the first time in Tunisia, the involvement of Pseudomonas cerasi (PG02a) and Pseudomonas congelans (PG02c). The latter did not show significant pathogenicity on citrus, but was pathogenic on cantaloupe and active for ice nucleation that could play a role in the disease. A comparative phylogenetic study of citrus pathogens from Iran, Montenegro and Tunisia revealed that P. syringae (PG02b) strains are closely related but again not clonal. Interestingly P. cerasi (PG02a) was isolated in two countries and seems to outspread. However, its role in the diseases is not fully understood and it should be monitored in future studies. The diversity of pathogenic Pseudomonas spp. and the extension of the diseases highlight that they have become complex and synergistic. It opens questions about which factors favor diseases and how to fight against them efficiently and with sustainable means.

4.
Microorganisms ; 8(8)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727027

RESUMO

To compare environmental and culture-derived microbial communities, we performed 16S metabarcoding of uncultured samples and their culture-derived bacterial lawns. Microbial communities were obtained from freshwater river samples representative of an anthropization gradient along a river stream. Their culture-derived bacterial lawns were obtained by growing aliquots of the samples on a broad range medium and on two different semi-selective media. The V3-V4 16S rRNA region was amplified and sequenced. The bacterial diversity of water samples decreased from the upper to lower stream sampling sites and, as expected, these differences were mostly suppressed by the culture step. Overall, the diversity of cultured-derived bacterial communities reflected selectivity of each tested medium. Comparison of treatments indicated that the culture selected both detected and rare undetected environmental species. Accurate detection of rare environmental bacteria of the Pectobacterium genus by 16S metabarcoding of the culture lawn was demonstrated. Interestingly, for abundant taxa, such as those of the Pseudomonas genus, the culture/environment ratio varied between sampled sites, indicating the difficulty of comparing cultured-derived taxa abundance between environmental sites. Finally, our study also highlighted media specificity and complementarity: bacterial communities grown on the two selective media, while selecting a small set of specific species, were mostly a subset of the bacterial community observed on the broad range medium.

5.
PLoS One ; 9(9): e105547, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25184292

RESUMO

The Pseudomonas syringae complex is composed of numerous genetic lineages of strains from both agricultural and environmental habitats including habitats closely linked to the water cycle. The new insights from the discovery of this bacterial species in habitats outside of agricultural contexts per se have led to the revelation of a wide diversity of strains in this complex beyond what was known from agricultural contexts. Here, through Multi Locus Sequence Typing (MLST) of 216 strains, we identified 23 clades within 13 phylogroups among which the seven previously described P. syringae phylogroups were included. The phylogeny of the core genome of 29 strains representing nine phylogroups was similar to the phylogeny obtained with MLST thereby confirming the robustness of MLST-phylogroups. We show that phenotypic traits rarely provide a satisfactory means for classification of strains even if some combinations are highly probable in some phylogroups. We demonstrate that the citrate synthase (cts) housekeeping gene can accurately predict the phylogenetic affiliation for more than 97% of strains tested. We propose a list of cts sequences to be used as a simple tool for quickly and precisely classifying new strains. Finally, our analysis leads to predictions about the diversity of P. syringae that is yet to be discovered. We present here an expandable framework mainly based on cts genetic analysis into which more diversity can be integrated.


Assuntos
Citrato (si)-Sintase/genética , Genes Bacterianos , Genoma Bacteriano , Filogenia , Pseudomonas syringae , Sequência de Bases , Bases de Dados Genéticas , Ecossistema , Genes Essenciais , Variação Genética , Genótipo , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Fenótipo , Pseudomonas syringae/classificação , Pseudomonas syringae/genética
6.
Mol Plant Pathol ; 15(2): 217-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24118745

RESUMO

Although the biological variability of Watermelon mosaic virus is limited, isolates from the three main molecular groups differ in their ability to infect systemically Chenopodium quinoa. Mutations were introduced in a motif of three or five amino acids located in the N-terminal part of the coat protein, and differing in isolates from group 1 (motif: lysine-glutamic acid-alanine (Lys-Glu-Ala) or KEA, systemic on C. quinoa), group 2 (Lys-Glu-Thr or KET, not systemic on C. quinoa) and group 3 (KEKET, not systemic on C. quinoa). Mutagenesis of KEKET in an isolate from group 3 to KEA or KEKEA was sufficient to make the virus systemic on C. quinoa, whereas mutagenesis to KET had no effect. Introduction of a KEA motif in Zucchini yellow mosaic virus coat protein also resulted in systemic infection on C. quinoa. These mutations had no obvious effect on the disorder profile or potential post-translational modifications of the coat protein as determined in silico.


Assuntos
Proteínas do Capsídeo/fisiologia , Chenopodium quinoa/virologia , Potyvirus/patogenicidade , Virulência , Proteínas do Capsídeo/química , Potyvirus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA