Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 10(5): 1825-1834, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36857707

RESUMO

Non-fullerene acceptors (NFAs) have delivered advancement in bulk heterojunction organic solar cell efficiencies, with a significant milestone of 20% now in sight. However, these materials challenge the accepted wisdom of how organic solar cells work. In this work we present a neat Y6 device with an efficiency above 4.5%. We thoroughly investigate mechanisms of charge generation and recombination as well as transport in order to understand what is special about Y6. Our data suggest that Y6 generates bulk free charges, with ambipolar mobility, which can be extracted in the presence of transport layers.

2.
Nat Commun ; 11(1): 6005, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243982

RESUMO

In non-fullerene organic solar cells, the long-range structure ordering induced by end-group π-π stacking of fused-ring non-fullerene acceptors is considered as the critical factor in realizing efficient charge transport and high power conversion efficiency. Here, we demonstrate that side-chain engineering of non-fullerene acceptors could drive the fused-ring backbone assembly from a π-π stacking mode to an intermixed packing mode, and to a non-stacking mode to refine its solid-state properties. Different from the above-mentioned understanding, we find that close atom contacts in a non-stacking mode can form efficient charge transport pathway through close side atom interactions. The intermixed solid-state packing motif in active layers could enable organic solar cells with superior efficiency and reduced non-radiative recombination loss compared with devices based on molecules with the classic end-group π-π stacking mode. Our observations open a new avenue in material design that endows better photovoltaic performance.

3.
Adv Sci (Weinh) ; 7(18): 2001986, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32999853

RESUMO

Morphological stability is crucially important for the long-term stability of polymer solar cells (PSCs). Many high-efficiency PSCs suffer from metastable morphology, resulting in severe device degradation. Here, a series of copolymers is developed by manipulating the content of chlorinated benzodithiophene-4,8-dione (T1-Cl) via a random copolymerization approach. It is found that all the copolymers can self-assemble into a fibril nanostructure in films. By altering the T1-Cl content, the polymer crystallinity and fibril width can be effectively controlled. When blended with several nonfullerene acceptors, such as TTPTT-4F, O-INIC3, EH-INIC3, and Y6, the optimized fibril interpenetrating morphology can not only favor charge transport, but also inhibit the unfavorable molecular diffusion and aggregation in active layers, leading to excellent morphological stability. The work demonstrates the importance of optimization of fibril network morphology in realizing high-efficiency and ambient-stable PSCs, and also provides new insights into the effect of chemical structure on the fibril network morphology and photovoltaic performance of PSCs.

4.
Adv Mater ; 32(21): e2000645, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32285551

RESUMO

A new fluorinated electron acceptor (FINIC) based on 6,6,12,12-tetrakis(3-fluoro-4-hexylphenyl)-indacenobis(dithieno[3,2-b;2',3'-d]thiophene) as the electron-donating central core and 5,6-difluoro-3-(1,1-dicyanomethylene)-1-indanone as the electron-deficient end groups is rationally designed and synthesized. FINIC shows similar absorption profile in dilute solution to the nonfluorinated analogue INIC. However, compared with INIC, FINIC film shows red-shifted absorption, down-shifted frontier molecular orbital energy levels, enhanced crystallinity, and more ordered molecular packing. Single-crystal structure data show that FINIC molecules pack into closer 3D "network" motif through H-bonding and π-π interaction, while INIC molecules pack into incompact "honeycomb" motif through only π-π stacking. Theoretical calculations reveal that FINIC has stronger electronic coupling and more molecular interactions than INIC. FINIC has higher electron mobilities in both horizontal and vertical directions than INIC. Moreover, FINIC and INIC support efficient 3D exciton transport. PBD-SF/FINIC blend has a larger driving force for exciton splitting, more efficient charge transfer and photoinduced charge generation. Finally, the organic solar cells based on PBD-SF/FINIC blend yield power conversion efficiency of 14.0%, far exceeding that of the PBD-SF/INIC-based devices (5.1%).

5.
J Am Chem Soc ; 141(17): 6922-6929, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964678

RESUMO

Modest exciton diffusion lengths dictate the need for nanostructured bulk heterojunctions in organic photovoltaic (OPV) cells; however, this morphology compromises charge collection. Here, we reveal rapid exciton diffusion in films of a fused-ring electron acceptor that, when blended with a donor, already outperforms fullerene-based OPV cells. Temperature-dependent ultrafast exciton annihilation measurements are used to resolve a quasi-activationless exciton diffusion coefficient of at least 2 × 10-2 cm2/s, substantially exceeding typical organic semiconductors and consistent with the 20-50 nm domain sizes in optimized blends. Enhanced three-dimensional diffusion is shown to arise from molecular and packing factors; the rigid planar molecular structure is associated with low reorganization energy, good transition dipole moment alignment, high chromophore density, and low disorder, all enhancing long-range resonant energy transfer. Relieving exciton diffusion constraints has important implications for OPVs; large, ordered, and pure domains enhance charge separation and transport, and suppress recombination, thereby boosting fill factors. Further enhancements to diffusion lengths may even obviate the need for the bulk heterojunction morphology.

6.
J Am Chem Soc ; 140(44): 14938-14944, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30354087

RESUMO

We report the fused ring electron acceptor (FREA)-perovskite hybrid as a promising platform to fabricate organic-inorganic hybrid solar cells with simple preparation, high efficiency, and good stability. The FREA-perovskite hybrid films exhibit larger grain sizes and stronger crystallinity than the pristine perovskite films. Moreover, the FREA molecules can form coordination bonding with undercoordinated Pb atoms and passivate the trap states in the perovskite films. Time-resolved photoluminescence and transient absorption measurements reveal that FREA facilitates efficient electron extraction and collection. Transient photocurrent and photovoltage measurements suggest faster charge transfer and reduced charge recombination in solar cells based on FREA-perovskite hybrid films. Consequently, solar cells based on FREA-perovskite hybrid films yield a champion efficiency of 21.7% with enhanced stability, which is higher than that of the control devices based on pristine perovskite films (19.6%).

7.
Adv Mater ; 30(26): e1707353, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29775511

RESUMO

A polymer fibril assembly can dictate the morphology framework, in forming a network structure, which is highly advantageous in bulk heterojunction (BHJ) organic solar cells (OSCs). A fundamental understanding of how to manipulate such a fibril assembly and its influence on the BHJ morphology and device performance is crucially important. Here, a series of donor-acceptor polymers, PBT1-O, PBT1-S, and PBT1-C, is used to systematically investigate the relationship between molecular structure, morphology, and photovoltaic performance. The subtle atom change in side chains is found to have profound effect on regulating electronic structure and self-assembly of conjugated polymers. Compared with PBT1-O and PBT1-S, PBT1-C-based OSCs show much higher photovoltaic performance with a record fill factor (FF) of 80.5%, due to the formation of optimal interpenetrating network morphology. Such a fibril network strategy is further extended to nonfullerene OSCs using a small-molecular acceptor, which shows a high efficiency of 12.7% and an FF of 78.5%. The results indicate the formation of well-defined fibrillar structure is a promising approach to achieving a favorable morphology in BHJ OSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA