Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(14): e2207662120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37000847

RESUMO

Living systems are intrinsically nonequilibrium: They use metabolically derived chemical energy to power their emergent dynamics and self-organization. A crucial driver of these dynamics is the cellular cytoskeleton, a defining example of an active material where the energy injected by molecular motors cascades across length scales, allowing the material to break the constraints of thermodynamic equilibrium and display emergent nonequilibrium dynamics only possible due to the constant influx of energy. Notwithstanding recent experimental advances in the use of local probes to quantify entropy production and the breaking of detailed balance, little is known about the energetics of active materials or how energy propagates from the molecular to emergent length scales. Here, we use a recently developed picowatt calorimeter to experimentally measure the energetics of an active microtubule gel that displays emergent large-scale flows. We find that only approximately one-billionth of the system's total energy consumption contributes to these emergent flows. We develop a chemical kinetics model that quantitatively captures how the system's total thermal dissipation varies with ATP and microtubule concentrations but that breaks down at high motor concentration, signaling an interference between motors. Finally, we estimate how energy losses accumulate across scales. Taken together, these results highlight energetic efficiency as a key consideration for the engineering of active materials and are a powerful step toward developing a nonequilibrium thermodynamics of living systems.


Assuntos
Citoesqueleto , Microtúbulos , Termodinâmica , Entropia , Modelos Químicos
2.
Soft Matter ; 18(9): 1825-1835, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167642

RESUMO

Microtubule-based active matter provides insight into the self-organization of motile interacting constituents. We describe several formulations of microtubule-based 3D active isotropic fluids. Dynamics of these fluids is powered by three types of kinesin motors: a processive motor, a non-processive motor, and a motor which is permanently linked to a microtubule backbone. Another modification uses a specific microtubule crosslinker to induce bundle formation instead of a non-specific polymer depletant. In comparison to the already established system, each formulation exhibits distinct properties. These developments reveal the temporal stability of microtubule-based active fluids while extending their reach and the applicability.


Assuntos
Longevidade , Microtúbulos , Cinesinas
3.
Phys Rev Lett ; 125(25): 257801, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416339

RESUMO

Spontaneous growth of long-wavelength deformations is a defining feature of active liquid crystals. We investigate the effect of confinement on the instability of 3D active liquid crystals in the isotropic phase composed of extensile microtubule bundles and kinesin molecular motors. When shear aligned, such fluids exhibit finite-wavelength self-amplifying bend deformations. By systematically changing the channel size we elucidate how the instability wavelength and its growth rate depend on the channel dimensions. Experimental findings are qualitatively consistent with a minimal hydrodynamic model, where the fastest growing deformation is set by a balance of active driving and elastic relaxation. Our results demonstrate that confinement determines the structure and dynamics of active fluids on all experimentally accessible length scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA