Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 32(2): 101227, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38516691

RESUMO

Biotechnologies such as gene therapy have brought DNA vectors to the forefront of pharmaceuticals. The quality of starting material plays a pivotal role in determining final product quality. Here, we examined the fidelity of DNA replication using enzymatic methods (in vitro) compared to plasmid DNA produced in vivo in E. coli. Next-generation sequencing approaches rely on in vitro polymerases, which have inherent limitations in sensitivity. To address this challenge, we introduce a novel assay based on loss-of-function (LOF) mutations in the conditionally toxic sacB gene. Our findings show that DNA production in E. coli results in significantly fewer LOF mutations (80- to 3,000-fold less) compared to enzymatic DNA replication methods such as polymerase chain reaction (PCR) and rolling circle amplification (RCA). These results suggest that using DNA produced by PCR or RCA may introduce a substantial number of mutation impurities, potentially affecting the quality and yield of final pharmaceutical products. Our study underscores that DNA synthesized in vitro has a significantly higher mutation rate than DNA produced traditionally in E. coli. Therefore, utilizing in vitro enzymatically produced DNA in biotechnology and biomanufacturing may entail considerable fidelity-related risks, while using DNA starting material derived from E. coli substantially mitigates this risk.

2.
Elife ; 122024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526948

RESUMO

Circadian clocks are composed of transcription-translation negative feedback loops that pace rhythms of gene expression to the diurnal cycle. In the filamentous fungus Neurospora crassa, the proteins Frequency (FRQ), the FRQ-interacting RNA helicase (FRH), and Casein-Kinase I (CK1) form the FFC complex that represses expression of genes activated by the white-collar complex (WCC). FRQ orchestrates key molecular interactions of the clock despite containing little predicted tertiary structure. Spin labeling and pulse-dipolar electron spin resonance spectroscopy provide domain-specific structural insights into the 989-residue intrinsically disordered FRQ and the FFC. FRQ contains a compact core that associates and organizes FRH and CK1 to coordinate their roles in WCC repression. FRQ phosphorylation increases conformational flexibility and alters oligomeric state, but the changes in structure and dynamics are non-uniform. Full-length FRQ undergoes liquid-liquid phase separation (LLPS) to sequester FRH and CK1 and influence CK1 enzymatic activity. Although FRQ phosphorylation favors LLPS, LLPS feeds back to reduce FRQ phosphorylation by CK1 at higher temperatures. Live imaging of Neurospora hyphae reveals FRQ foci characteristic of condensates near the nuclear periphery. Analogous clock repressor proteins in higher organisms share little position-specific sequence identity with FRQ; yet, they contain amino acid compositions that promote LLPS. Hence, condensate formation may be a conserved feature of eukaryotic clocks.


Natural oscillations known as circadian rhythms influence many processes in humans and other animals including sleep, eating, brain activity and body temperature. These rhythms allow us to anticipate and prepare for regular changes in our environment including day-night cycles and the temperature of our surroundings. Circadian clocks in animals, fungi and other 'eukaryotic' organisms rely on networks of components that repress their own production to generate oscillations in their levels in cells over the course of a 24-hour period. The components in animal and fungus circadian clocks are different but there are strong similarities in their properties and how the networks operate. As a result, a type of fungus known as Neurospora crassa is often used as a model to study how circadian rhythms work in animals. A central component in the N. crassa circadian clock is a protein known as Frequency (FRQ). It is a large protein that, unlike most proteins, lacks a well-defined, three-dimensional structure. Despite this, it is able to bind to and regulate other proteins to repress its own production. One of its protein partners known as CK1 attaches small tags known as phosphate groups to FRQ to set the length of the circadian rhythm. However, it remains unclear how FRQ interacts with its protein partners or what effect the phosphate groups have on its activity. To address this question, Tariq, Maurici et al. used biochemical approaches to study the structure of FRQ. The experiments revealed that it contains a compact core that is able to bind to CK1 and other protein partners. The way FRQ regulates its protein partners is unusual: it undergoes a chemical process known as liquid-liquid phase separation to sequester other circadian clock proteins and modulate their enzymatic activities. In this process, a solution containing molecules of FRQ separates into two distinct components (known as phases), one of which contains FRQ and its partners in a concentrated liquid-like mixture. Evidence for such mixtures has also been found in living fungal cells. Further experiments suggest that liquid-liquid phase separation of FRQ may allow the clock to compensate for changes in temperature to maintain a regular rhythm. The circadian clocks of animals and other organisms all have proteins that perform similar roles as FRQ and maintain sequence properties that promote liquid-liquid phase separation. Therefore, it is possible that liquid-liquid phase separation may be a common feature of circadian rhythms in nature.


Assuntos
Relógios Circadianos , Neurospora crassa , Relógios Circadianos/genética , Fosforilação , Separação de Fases , Proteínas Fúngicas/metabolismo , Neurospora crassa/genética , Ritmo Circadiano/genética
3.
Biochemistry ; 61(23): 2672-2686, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36321948

RESUMO

Bacterial chemoreceptors regulate the cytosolic multidomain histidine kinase CheA through largely unknown mechanisms. Residue substitutions in the peptide linkers that connect the P4 kinase domain to the P3 dimerization and P5 regulatory domain affect CheA basal activity and activation. To understand the role that these linkers play in CheA activity, the P3-to-P4 linker (L3) and P4-to-P5 linker (L4) were extended and altered in variants of Thermotoga maritima (Tm) CheA. Flexible extensions of the L3 and L4 linkers in CheA-LV1 (linker variant 1) allowed for a well-folded kinase domain that retained wild-type (WT)-like binding affinities for nucleotide and normal interactions with the receptor-coupling protein CheW. However, CheA-LV1 autophosphorylation activity registered ∼50-fold lower compared to WT. Neither a WT nor LV1 dimer containing a single P4 domain could autophosphorylate the P1 substrate domain. Autophosphorylation activity was rescued in variants with extended L3 and L4 linkers that favor helical structure and heptad spacing. Autophosphorylation depended on linker spacing and flexibility and not on sequence. Pulse-dipolar electron-spin resonance (ESR) measurements with spin-labeled adenosine 5'-triphosphate (ATP) analogues indicated that CheA autophosphorylation activity inversely correlated with the proximity of the P4 domains within the dimers of the variants. Despite their separation in primary sequence and space, the L3 and L4 linkers also influence the mobility of the P1 substrate domains. In all, interactions of the P4 domains, as modulated by the L3 and L4 linkers, affect domain dynamics and autophosphorylation of CheA, thereby providing potential mechanisms for receptors to regulate the kinase.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Histidina Quinase/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/genética , Proteínas Quimiotáticas Aceptoras de Metil/química , Proteínas de Bactérias/química , Modelos Moleculares , Thermotoga maritima/metabolismo , Quimiotaxia , Proteínas de Escherichia coli/química
4.
J Biol Chem ; 298(12): 102598, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36252616

RESUMO

The Per-Arnt-Sim (PAS; named for the representative proteins: Period, Aryl hydrocarbon receptor nuclear translocator protein and Single-minded) domain of the dimeric Escherichia coli aerotaxis receptor Aer monitors cellular respiration through a redox-sensitive flavin adenine dinucleotide (FAD) cofactor. Conformational shifts in the PAS domain instigated by the oxidized FAD (FADOX)/FAD anionic semiquinone (FADASQ) redox couple traverse the HAMP (histidine kinases, adenylate cyclases, methyl-accepting chemotaxis proteins, and phosphatases) and kinase control domains of the Aer dimer to regulate CheA kinase activity. The PAS domain of Aer is unstable and has not been previously purified. Here, residue substitutions that rescue FAD binding in an FAD binding-deficient full-length Aer variant were used in combination to stabilize the Aer PAS domain. We solved the 2.4 Å resolution crystal structure of this variant, Aer-PAS-GVV, and revealed a PAS fold that contains distinct features associated with FAD-based redox sensing, such as a close contact between the Arg115 side chain and N5 of the isoalloxazine ring and interactions of the flavin with the side chains of His53 and Asn85 that are poised to convey conformational signals from the cofactor to the protein surface. In addition, we determined the FADox/FADASQ formal potentials of Aer-PAS-GVV and full-length Aer reconstituted into nanodiscs. The Aer redox couple is remarkably low at -289.6 ± 0.4 mV. In conclusion, we propose a model for Aer energy sensing based on the low potential of Aer-PAS-FADox/FADASQ couple and the inability of Aer-PAS to bind to the fully reduced FAD hydroquinone.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Estrutura Terciária de Proteína , Oxirredução
5.
Nano Converg ; 9(1): 18, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35478076

RESUMO

We have rationally designed a peptide that assembles into a redox-responsive, antimicrobial metallohydrogel. The resulting self-healing material can be rapidly reduced by ascorbate under physiological conditions and demonstrates a remarkable 160-fold change in hydrogel stiffness upon reduction. We provide a computational model of the hydrogel, explaining why position of nitrogen in non-natural amino acid pyridyl-alanine results in drastically different gelation properties of peptides with metal ions. Given its antimicrobial and rheological properties, the newly designed hydrogel can be used for removable wound dressing application, addressing a major unmet need in clinical care.

6.
Nat Commun ; 13(1): 1790, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379805

RESUMO

Despite the recent clinical success of T cell checkpoint inhibition targeting the CTLA-4 and PD-1 pathways, many patients either fail to achieve objective responses or they develop resistance to therapy. In some cases, poor responses to checkpoint blockade have been linked to suboptimal CD28 costimulation and the inability to generate and maintain a productive adaptive anti-tumor immune response. To address this, here we utilize directed evolution to engineer a CD80 IgV domain with increased PD-L1 affinity and fuse this to an immunoglobulin Fc domain, creating a therapeutic (ALPN-202, davoceticept) capable of providing CD28 costimulation in a PD-L1-dependent fashion while also antagonizing PD-1 - PD-L1 and CTLA-4-CD80/CD86 interactions. We demonstrate that by combining CD28 costimulation and dual checkpoint inhibition, ALPN-202 enhances T cell activation and anti-tumor efficacy in cell-based assays and mouse tumor models more potently than checkpoint blockade alone and thus has the potential to generate potent, clinically meaningful anti-tumor immunity in humans.


Assuntos
Antígenos CD28 , Neoplasias , Animais , Antígeno B7-1/metabolismo , Antígenos CD28/metabolismo , Humanos , Ativação Linfocitária , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Linfócitos T
7.
Structure ; 30(6): 851-861.e5, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35397203

RESUMO

Cryptochrome (CRY) entrains the fly circadian clock by binding to Timeless (TIM) in light. Undocking of a helical C-terminal tail (CTT) in response to photoreduction of the CRY flavin cofactor gates TIM recognition. We present a generally applicable select western-blot-free tagged-protein interaction (SWFTI) assay that allowed the quantification of CRY binding to TIM in dark and light. The assay was used to study CRY variants with residue substitutions in the flavin pocket and correlate their TIM affinities with CTT undocking, as measured by pulse-dipolar ESR spectroscopy and evaluated by molecular dynamics simulations. CRY variants with the CTT removed or undocked bound TIM constitutively, whereas those incapable of photoreduction bound TIM weakly. In response to the flavin redox state, two conserved histidine residues contributed to a robust on/off switch by mediating CTT interactions with the flavin pocket and TIM. Our approach provides an expeditious means to quantify the interactions of difficult-to-produce proteins.


Assuntos
Criptocromos , Proteínas de Drosophila , Animais , Criptocromos/química , Criptocromos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Olho/química , Flavinas/metabolismo , Luz
8.
J Am Chem Soc ; 143(25): 9314-9319, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34154323

RESUMO

All radical S-adenosylmethionine (radical-SAM) enzymes, including the noncanonical radical-SAM enzyme diphthamide biosynthetic enzyme Dph1-Dph2, require at least one [4Fe-4S](Cys)3 cluster for activity. It is well-known in the radical-SAM enzyme community that the [4Fe-4S](Cys)3 cluster is extremely air-sensitive and requires strict anaerobic conditions to reconstitute activity in vitro. Thus, how such enzymes function in vivo in the presence of oxygen in aerobic organisms is an interesting question. Working on yeast Dph1-Dph2, we found that consistent with the known oxygen sensitivity, the [4Fe-4S] cluster is easily degraded into a [3Fe-4S] cluster. Remarkably, the small iron-containing protein Dph3 donates one Fe atom to convert the [3Fe-4S] cluster in Dph1-Dph2 to a functional [4Fe-4S] cluster during the radical-SAM enzyme catalytic cycle. This mechanism to maintain radical-SAM enzyme activity in aerobic environments is likely general, and Dph3-like proteins may exist to keep other radical-SAM enzymes functional in aerobic environments.


Assuntos
Histidina/análogos & derivados , Proteínas Ferro-Enxofre/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ditionita/metabolismo , Histidina/biossíntese , Ferro/química , Proteínas Ferro-Enxofre/química , Fator 2 de Elongação de Peptídeos/metabolismo , Proteínas Repressoras/química , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química
9.
Commun Biol ; 4(1): 249, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637846

RESUMO

Light-induction of an anionic semiquinone (SQ) flavin radical in Drosophila cryptochrome (dCRY) alters the dCRY conformation to promote binding and degradation of the circadian clock protein Timeless (TIM). Specific peptide ligation with sortase A attaches a nitroxide spin-probe to the dCRY C-terminal tail (CTT) while avoiding deleterious side reactions. Pulse dipolar electron-spin resonance spectroscopy from the CTT nitroxide to the SQ shows that flavin photoreduction shifts the CTT ~1 nm and increases its motion, without causing full displacement from the protein. dCRY engineered to form the neutral SQ serves as a dark-state proxy to reveal that the CTT remains docked when the flavin ring is reduced but uncharged. Substitutions of flavin-proximal His378 promote CTT undocking in the dark or diminish undocking in the light, consistent with molecular dynamics simulations and TIM degradation activity. The His378 variants inform on recognition motifs for dCRY cellular turnover and strategies for developing optogenetic tools.


Assuntos
Benzoquinonas/metabolismo , Criptocromos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Proteínas do Olho/metabolismo , Flavinas/metabolismo , Animais , Criptocromos/genética , Criptocromos/efeitos da radiação , Proteínas de Drosophila/genética , Proteínas de Drosophila/efeitos da radiação , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos da radiação , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas do Olho/genética , Proteínas do Olho/efeitos da radiação , Luz , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Relação Estrutura-Atividade
10.
J Am Chem Soc ; 142(51): 21368-21381, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33305945

RESUMO

Exchange processes which include conformational change, protonation/deprotonation, and binding equilibria are routinely studied by 2D exchange NMR techniques, where information about the exchange of nuclei between environments with different NMR shifts is obtained from the development of cross-peaks. Whereas 2D NMR enables the real time study of millisecond and slower exchange processes, 2D ESR in the form of 2D-ELDOR (two-dimensional electron-electron double resonance) has the potential for such studies over the nanosecond to microsecond real time scales. Cross-peak development due to chemical exchange has been seen previously for semiquinones in ESR, but this is not possible for most common ESR probes, such as nitroxides, studied at typical ESR frequencies because, unlike NMR, the exchanging states yield ESR signals that are not resolved from each other within their respective line widths. But at 95 GHz, it becomes possible to resolve them in many cases because of the increased g-factor resolution. The 95 GHz instrumental developments occurring at ACERT now enable such studies. We demonstrate these new capabilities in two studies: (A) the protonation/deprotonation process for a pH-sensitive imidazoline spin label in aqueous solution where the exchange rate and the population ratio of the exchanging states are controlled by the concentration and pH of the buffer solution, respectively, and (B) a nitroxide radical partitioning between polar (aqueous) and nonpolar (phospholipid) environments in multilamellar lipid vesicles, where the cross-peak development arises from the exchange of the nitroxide between the two phases. This work represents the first example of the observation and analysis of cross-peaks arising from chemical exchange processes involving nitroxide spin labels.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Soluções Tampão , Concentração de Íons de Hidrogênio , Imidazolinas/química , Cinética , Espectroscopia de Ressonância Magnética , Fosfolipídeos/química , Prótons , Marcadores de Spin , Água/química
11.
Methods Enzymol ; 620: 509-544, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31072500

RESUMO

Molecular mechanisms of dark-to-light state transitions in flavoprotein photoreceptors have been the subject of intense investigation. Blue-light sensing flavoproteins fall into three general classes that share aspects of their activation processes: LOV domains, BLUF proteins, and cryptochromes. In all cases, light-induced changes in flavin redox, protonation, and bonding states result in hydrogen-bond and conformational rearrangements important for regulation of downstream targets. Physical characterization of these flavoprotein states can provide valuable insights into biological function, but clear conclusions are often challenging to draw owing to complexities of data collection and interpretation. In this chapter, we briefly review the three classes of flavoprotein photoreceptors and provide methods for their recombinant production, reconstitution with flavin cofactor, and characterization. We then relate best practices and special considerations for the application of several types of spectroscopies, redox potential measurements, and X-ray scattering experiments to photosensitive flavoproteins. The methods presented are generally accessible to most laboratories.


Assuntos
Criptocromos/química , Proteínas de Escherichia coli/química , Diester Fosfórico Hidrolases/química , Criptocromos/isolamento & purificação , Cristalografia por Raios X/métodos , Proteínas de Escherichia coli/isolamento & purificação , Flavinas/química , Diester Fosfórico Hidrolases/isolamento & purificação , Estrutura Terciária de Proteína , Espalhamento de Radiação
12.
Methods Mol Biol ; 1571: 143-160, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28281255

RESUMO

The invasion of cancer cells through their surrounding extracellular matrices is the first critical step to metastasis, a devastating event to cancer patients. However, in vitro cancer cell invasion is mostly studied using two-dimensional (2D) models. Three-dimensional (3D) multicellular spheroids may offer an advantageous cell model for cancer research and oncology drug discovery. This chapter describes a label-free, real-time, and single-cell approach to quantify the invasion of 3D spheroid colon cancer cells through Matrigel using a spatially resolved resonant waveguide grating imager.


Assuntos
Colágeno , Laminina , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Proteoglicanas , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Esferoides Celulares , Células Tumorais Cultivadas , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular , Combinação de Medicamentos , Humanos
13.
Biomed Microdevices ; 18(5): 89, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27620628

RESUMO

The metastatic potential of cancer cells is an elusive property that is indicative of the later stages of cancer progression. The ability to distinguish between poorly and highly metastatic cells is invaluable for understanding the basic biology of cancer and to develop more treatments. In this paper, we exploit a A375 melanoma cell line series (A375P, A375MA1, A375MA2) that vary in metastatic potential, to demonstrate an in vitro screening assay using polydimethylsiloxane (PDMS) microbubble well arrays that can distinguish these cell lines by their growth characteristics in including morphology, migratory potential, and clonogenic potential. These cell lines cannot be distinguished by their growth characteristics when cultured on standard tissue culture plastic or planar PDMS. Results show that the more metastatic cell lines (A375MA1, A375MA2) have a higher proliferative potential and a distinctive radial spreading growth pattern out of the microbubble well. The A375MA2 cell line also has a higher tendency to form multicellular spheroids. The ability to successfully correlate the metastatic potential of cancer cells with their growth characteristics is essential first step toward developing a high-throughput screening assay to identify aggressive tumor cells in primary samples. The capability to culture and recover aggressive cells from microbubble wells will enable identification of candidate metastatic biomarkers which has immense clinical significance.


Assuntos
Melanoma/patologia , Microtecnologia/métodos , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Análise de Célula Única , Esferoides Celulares/patologia
14.
Theranostics ; 6(9): 1324-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375782

RESUMO

Photodynamic therapy (PDT) is a promising non-invasive therapeutic modality that has been proposed for treating prostate cancer, but the procedure is associated with limited efficacy, tumor recurrence and photo-toxicity. In the present study, we proposed to develop a novel multifunctional nano-platform for targeted delivery of heat, reactive oxygen species (ROS) and heat shock protein 90 (Hsp90) inhibitor simultaneously for combination therapy against prostate cancer. This new nano-platform combines two newly developed entities: 1) a unique organic and biocompatible nanoporphyrin-based drug delivery system that can generate efficient heat and ROS simultaneously with light activation at the tumor sites for dual-modal photothermal- and photodynamic- therapy (PTT/PDT), and 2) new nano-formulations of Hsp90 inhibitors that can decrease the levels of pro-survival and angiogenic signaling molecules induced by phototherapy, therefore, further sensitizing cancer cells to phototherapy. Furthermore, the nanoparticles have activatable near infrared (NIR) fluorescence for optical imaging to conveniently monitor the real-time drug delivery in both subcutaneous and orthotopic mouse models bearing prostate cancer xenograft. This novel multifunctional nano-platform has great potential to improve the care of prostate cancer patients through targeted combination therapy.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Hipertermia Induzida/métodos , Nanopartículas/administração & dosagem , Fotoquimioterapia/métodos , Neoplasias da Próstata/terapia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Xenoenxertos , Temperatura Alta , Humanos , Masculino , Camundongos , Nanopartículas/química , Porfirinas/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Nanomedicina Teranóstica/métodos , Resultado do Tratamento
15.
J Control Release ; 223: 215-223, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26732555

RESUMO

Prostate cancer, once it has progressed from its local to metastatic form, is a disease with poor prognosis and limited treatment options. Here we demonstrate an approach using nanoscale liposomes conjugated with E-selectin adhesion protein and Apo2L/TRAIL (TNF-related apoptosis-inducing ligand) apoptosis ligand that attach to the surface of leukocytes and rapidly clear viable cancer cells from circulating blood in the living mouse. For the first time, it is shown that such an approach can be used to prevent the spontaneous formation and growth of metastatic tumors in an orthotopic xenograft model of prostate cancer, by greatly reducing the number of circulating tumor cells. We conclude that the use of circulating leukocytes as a carrier for the anti-cancer protein TRAIL could be an effective tool to directly target circulating tumor cells for the prevention of prostate cancer metastasis, and potentially other cancers that spread through the bloodstream.


Assuntos
Selectina E/administração & dosagem , Leucócitos , Células Neoplásicas Circulantes/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Animais , Selectina E/uso terapêutico , Humanos , Leucócitos/metabolismo , Lipossomos , Masculino , Camundongos Transgênicos , Metástase Neoplásica/prevenção & controle , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biomaterials ; 77: 66-76, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26584347

RESUMO

Tumor draining lymph nodes are the first site of metastasis in most types of cancer. The extent of metastasis in the lymph nodes is often used in staging cancer progression. We previously showed that nanoscale TRAIL liposomes conjugated to human natural killer cells enhance their endogenous therapeutic potential in killing cancer cells cultured in engineered lymph node microenvironments. In this work, it is shown that liposomes decorated with apoptosis-inducing ligand TRAIL and an antibody against a mouse natural killer cell marker are carried to the tumor draining inguinal lymph nodes and prevent the lymphatic spread of a subcutaneous tumor in mice. It is shown that targeting natural killer cells with TRAIL liposomes enhances their retention time within the tumor draining lymph nodes to induce apoptosis in cancer cells. It is concluded that this approach can be used to kill cancer cells within the tumor draining lymph nodes to prevent the lymphatic spread of cancer.


Assuntos
Células Matadoras Naturais/imunologia , Linfonodos/imunologia , Metástase Neoplásica/terapia , Animais , Anticorpos Monoclonais/imunologia , Antígenos Ly/imunologia , Apoptose/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Citotoxicidade Imunológica , Humanos , Imunoconjugados/uso terapêutico , Injeções Subcutâneas , Lipossomos , Linfonodos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Subfamília B de Receptores Semelhantes a Lectina de Células NK/imunologia , Metástase Neoplásica/imunologia , Proteínas Recombinantes/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Chem Phys ; 142(21): 212302, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26049420

RESUMO

The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane, vesicles can be observed. These 2D ELDOR experiments are performed as a function of mixing time, Tm, i.e., the time between the second and third π/2 pulses, which provides a third dimension. In fact, a fourth dimension may be added by varying the ESR frequency/magnetic field combination. Therefore, (3) it is shown how continuous-wave multifrequency ESR studies enable the decomposition of complex dynamics of, e.g., proteins by virtue of their respective time scales. These studies motivate our current efforts that are directed to extend 2D ELDOR to higher frequencies, 95 GHz in particular (from 9 and 17 GHz), in order to enable multi-frequency 2D ELDOR. This required the development of quasi-optical methods for performing the mm-wave experiments, which are summarized. We demonstrate state-of-the-art 95 GHz 2D ELDOR spectroscopy through its ability to resolve the two signals from a spin probe dissolved in both the lipid phase and the coexisting aqueous phase. As current 95 GHz experiments are restricted by limited spectral coverage of the π/2 pulse, as well as the very short T2 relaxation times of the electron spins, we discuss how these limitations are being addressed.


Assuntos
Elétrons , Espectroscopia de Ressonância de Spin Eletrônica , Simulação de Dinâmica Molecular , Movimento (Física)
18.
Am J Physiol Cell Physiol ; 308(10): C792-802, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25788574

RESUMO

Circulating tumor cells (CTC) have been implicated in the hematogenous spread of cancer. To investigate the fluid phase of cancer from a physical sciences perspective, the multi-institutional Physical Sciences-Oncology Center (PS-OC) Network performed multidisciplinary biophysical studies of single CTC and CTC aggregates from a patient with breast cancer. CTCs, ranging from single cells to aggregates comprised of 2-5 cells, were isolated using the high-definition CTC assay and biophysically profiled using quantitative phase microscopy. Single CTCs and aggregates were then modeled in an in vitro system comprised of multiple breast cancer cell lines and microfluidic devices used to model E-selectin mediated rolling in the vasculature. Using a numerical model coupling elastic collisions between red blood cells and CTCs, the dependence of CTC vascular margination on single CTCs and CTC aggregate morphology and stiffness was interrogated. These results provide a multifaceted characterization of single CTC and CTC aggregate dynamics in the vasculature and illustrate a framework to integrate clinical, biophysical, and mathematical approaches to enhance our understanding of the fluid phase of cancer.


Assuntos
Neoplasias da Mama/diagnóstico , Movimento Celular , Selectina E/metabolismo , Células Neoplásicas Circulantes/patologia , Transcitose/fisiologia , Neoplasias da Mama/metabolismo , Contagem de Células/métodos , Feminino , Humanos , Técnicas Analíticas Microfluídicas/métodos
19.
Integr Biol (Camb) ; 7(3): 324-34, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25625883

RESUMO

PTEN (phosphatase and tensin homolog), a tumour suppressor negatively regulating the PI3K signalling pathway, is the second most frequently mutated gene in human cancers. Decreased PTEN expression is correlated with colorectal cancer metastases and poor patient survival. Three dimensional (3D) multicellular spheroid models have been postulated to bridge the gap between 2D cell models and animal models for cancer research and drug discovery. However, little is known about the impact of PTEN deletion on the invasion of colon cancer spheroidal cells through a 3D extracellular matrix, and current techniques are limited in their ability to study in vitro 3D cell models in real-time. Here, we investigated the migration and invasion behaviours of the colon cancer cell line HCT116 and its PTEN-/- isogenic cell line using three different in vitro assays, wound healing, transwell invasion, and label-free single cell 3D(2) invasion assays enabled by a resonant waveguide grating (RWG) biosensor. Light microscopic and RWG imaging showed that PTEN deletion influences the spheroid formation of HCT116 cells at high seeding density, and accelerates the spontaneous transfer from the spheroid to substrate surfaces. In vitro migration and invasion assays showed that PTEN knockout increases the 2D migration speed of HCT116 cells, and the invasion rate of individual cells through Matrigel or cells in the spheroid through 3D Matrigel; moreover, the PI3K inhibitor treatment drastically reduces the invasiveness of both cell lines. This study suggests that PTEN knockout potentiates the invasiveness of colorectal cancer spheroidal cells through a 3D extracellular matrix, and the label-free single cell assay is a powerful tool for investigating cancer cell invasion, in particular using 3D cell models.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , PTEN Fosfo-Hidrolase/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Linhagem Celular Tumoral , Movimento Celular , Colágeno/química , Colágeno/metabolismo , Regulação para Baixo , Combinação de Medicamentos , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Laminina/química , Laminina/metabolismo , Invasividade Neoplásica , Proteoglicanas/química , Proteoglicanas/metabolismo
20.
Int J Mol Sci ; 15(11): 20209-39, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25380524

RESUMO

The World Health Organization (WHO) recently reported that the total number of global cancer cases in 2013 reached 14 million, a 10% rise since 2008, while the total number of cancer deaths reached 8.2 million, a 5.2% increase since 2008. Metastasis is the major cause of death from cancer, accounting for 90% of all cancer related deaths. Tumor-draining lymph nodes (TDLN), the sentinel nodes, are the first organs of metastasis in several types of cancers. The extent of metastasis in the TDLN is often used in disease staging and prognosis evaluation in cancer patients. Here, we describe the microenvironment of the TDLN and review the recent literature on liposome-based therapies directed to immune cells within the TDLN with the intent to target cancer cells.


Assuntos
Imunoterapia , Lipossomos/química , Linfonodos/patologia , Microambiente Tumoral , Animais , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA