Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry ; 93(1): 71-81, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372569

RESUMO

BACKGROUND: Fragile X syndrome (FXS) is characterized by physical abnormalities, anxiety, intellectual disability, hyperactivity, autistic behaviors, and seizures. Abnormal neuronal development in FXS is poorly understood. Data on patients with FXS remain scarce, and FXS animal models have failed to yield successful therapies. In vitro models do not fully recapitulate the morphology and function of human neurons. METHODS: To mimic human neuron development in vivo, we coinjected neural precursor cells derived from FXS patient-derived induced pluripotent stem cells and neural precursor cells derived from corrected isogenic control induced pluripotent stem cells into the brain of neonatal immune-deprived mice. RESULTS: The transplanted cells populated the brain and a proportion differentiated into neurons and glial cells. Immunofluorescence and single and bulk RNA sequencing analyses showed accelerated maturation of FXS neurons after an initial delay. Additionally, we found increased percentages of Arc- and Egr-1-positive FXS neurons and wider dendritic protrusions of mature FXS striatal medium spiny neurons. CONCLUSIONS: This transplantation approach provides new insights into the alterations of neuronal development in FXS by facilitating physiological development of cells in a 3-dimensional context.


Assuntos
Síndrome do Cromossomo X Frágil , Células-Tronco Neurais , Humanos , Camundongos , Animais , Síndrome do Cromossomo X Frágil/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fenótipo , Encéfalo/metabolismo , Camundongos Knockout
2.
J Pharmacol Exp Ther ; 374(3): 489-498, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32576599

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is caused by the loss of repression at the D4Z4 locus leading to aberrant double homeobox 4 (DUX4) expression in skeletal muscle. Activation of this early embryonic transcription factor results in the expression of its target genes causing muscle fiber death. Although progress toward understanding the signals driving DUX4 expression has been made, the factors and pathways involved in the transcriptional activation of this gene remain largely unknown. Here, we describe the identification and characterization of p38α as a novel regulator of DUX4 expression in FSHD myotubes. By using multiple highly characterized, potent, and specific inhibitors of p38α/ß, we show a robust reduction of DUX4 expression, activity, and cell death across patient-derived FSHD1 and FSHD2 lines. RNA-seq profiling reveals that a small number of genes are differentially expressed upon p38α/ß inhibition, the vast majority of which are DUX4 target genes. Our results reveal a novel and apparently critical role for p38α in the aberrant activation of DUX4 in FSHD and support the potential of p38α/ß inhibitors as effective therapeutics to treat FSHD at its root cause. SIGNIFICANCE STATEMENT: Using patient-derived facioscapulohumeral muscular dystrophy (FSHD) myotubes, we characterize the pharmacological relationships between p38α/ß inhibition, double homeobox 4 (DUX4) expression, its downstream transcriptional program, and muscle cell death. p38α/ß inhibition results in potent and specific DUX4 downregulation across multiple genotypes without significant effects in the process of myogenesis in vitro. These findings highlight the potential of p38α/ß inhibitors for the treatment of FSHD, a condition that today has no approved therapies.


Assuntos
Proteínas de Homeodomínio/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Morte Celular/fisiologia , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Humanos , Células Musculares/metabolismo , Músculo Esquelético/metabolismo
3.
Cell Rep ; 30(10): 3368-3382.e7, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32160543

RESUMO

Tumors that overexpress the MYC oncogene are frequently aneuploid, a state associated with highly aggressive cancers and tumor evolution. However, how MYC causes aneuploidy is not well understood. Here, we show that MYC overexpression induces mitotic spindle assembly defects and chromosomal instability (CIN) through effects on microtubule nucleation and organization. Attenuating MYC expression reverses mitotic defects, even in established tumor cell lines, indicating an ongoing role for MYC in CIN. MYC reprograms mitotic gene expression, and we identify TPX2 to be permissive for spindle assembly in MYC-high cells. TPX2 depletion blocks mitotic progression, induces cell death, and prevents tumor growth. Further elevating TPX2 expression reduces mitotic defects in MYC-high cells. MYC and TPX2 expression may be useful biomarkers to stratify patients for anti-mitotic therapies. Our studies implicate MYC as a regulator of mitosis and suggest that blocking MYC activity can attenuate the emergence of CIN and tumor evolution.


Assuntos
Mitose , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Morte Celular , Linhagem Celular Tumoral , Instabilidade Cromossômica , Citoproteção , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Mutações Sintéticas Letais
4.
Cell ; 171(1): 103-119.e18, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938112

RESUMO

It is now established that Bcl11b specifies T cell fate. Here, we show that in developing T cells, the Bcl11b enhancer repositioned from the lamina to the nuclear interior. Our search for factors that relocalized the Bcl11b enhancer identified a non-coding RNA named ThymoD (thymocyte differentiation factor). ThymoD-deficient mice displayed a block at the onset of T cell development and developed lymphoid malignancies. We found that ThymoD transcription promoted demethylation at CTCF bound sites and activated cohesin-dependent looping to reposition the Bcl11b enhancer from the lamina to the nuclear interior and to juxtapose the Bcl11b enhancer and promoter into a single-loop domain. These large-scale changes in nuclear architecture were associated with the deposition of activating epigenetic marks across the loop domain, plausibly facilitating phase separation. These data indicate how, during developmental progression and tumor suppression, non-coding transcription orchestrates chromatin folding and compartmentalization to direct with high precision enhancer-promoter communication.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Proteínas Repressoras/genética , Linfócitos T/citologia , Proteínas Supressoras de Tumor/genética , Animais , Fator de Ligação a CCCTC , Cromatina/metabolismo , Leucemia/genética , Região de Controle de Locus Gênico , Linfoma/genética , Camundongos , Lâmina Nuclear/metabolismo , Proteínas Repressoras/metabolismo , Linfócitos T/metabolismo , Timo/citologia , Timo/metabolismo , Transcrição Gênica
5.
J Clin Invest ; 127(10): 3609-3623, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28846070

RESUMO

During an immune response, CD8+ T lymphocytes can undergo asymmetric division, giving rise to daughter cells that exhibit distinct tendencies to adopt terminal effector and memory cell fates. Here we show that "pre-effector" and "pre-memory" cells resulting from the first CD8+ T cell division in vivo exhibited low and high rates of endogenous proteasome activity, respectively. Pharmacologic reduction of proteasome activity in CD8+ T cells early during differentiation resulted in acquisition of terminal effector cell characteristics, whereas enhancement of proteasome activity conferred attributes of memory lymphocytes. Transcriptomic and proteomic analyses revealed that modulating proteasome activity in CD8+ T cells affected cellular metabolism. These metabolic changes were mediated, in part, through differential expression of Myc, a transcription factor that controls glycolysis and metabolic reprogramming. Taken together, these results demonstrate that proteasome activity is an important regulator of CD8+ T cell fate and raise the possibility that increasing proteasome activity may be a useful therapeutic strategy to enhance the generation of memory lymphocytes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Divisão Celular/imunologia , Glicólise/imunologia , Memória Imunológica , Complexo de Endopeptidases do Proteassoma/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Camundongos Mutantes , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/imunologia , Proteínas Proto-Oncogênicas c-myc/metabolismo
6.
Nat Methods ; 14(6): 573-576, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28319113

RESUMO

We developed a systematic approach to map human genetic networks by combinatorial CRISPR-Cas9 perturbations coupled to robust analysis of growth kinetics. We targeted all pairs of 73 cancer genes with dual guide RNAs in three cell lines, comprising 141,912 tests of interaction. Numerous therapeutically relevant interactions were identified, and these patterns replicated with combinatorial drugs at 75% precision. From these results, we anticipate that cellular context will be critical to synthetic-lethal therapies.


Assuntos
Mapeamento Cromossômico/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Técnicas de Química Combinatória , Epistasia Genética/genética , Proteínas de Neoplasias/genética , Células A549 , Linhagem Celular Tumoral , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
7.
Mol Cell Biol ; 36(20): 2543-52, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27457619

RESUMO

Previous studies have demonstrated that E proteins induce activation-induced deaminase (AID) expression in activated B cells. Here, we examined the role of Id3 in germinal center (GC) cells. We found that Id3 expression is high in follicular B lineage cells but declines in GC cells. Immunized mice with Id3 expression depleted displayed a block in germinal center B cell maturation, showed reduced numbers of marginal zone B cells and class-switched cells, and were associated with decreased antibody titers and lower numbers of plasma cells. In vitro, Id3-depleted B cells displayed a defect in class switch recombination. Whereas AID levels were not altered in Id3-depleted activated B cells, the expression of a subset of genes encoding signaling components of antigen receptor-, cytokine receptor-, and chemokine receptor-mediated signaling was significantly impaired. We propose that during the GC reaction, Id3 levels decline to activate the expression of genes encoding signaling components that mediate B cell receptor- and or cytokine receptor-mediated signaling to promote the differentiation of GC B cells.


Assuntos
Linfócitos B/citologia , Citidina Desaminase/genética , Centro Germinativo/metabolismo , Imunização/métodos , Proteínas Inibidoras de Diferenciação/metabolismo , Animais , Linfócitos B/metabolismo , Diferenciação Celular , Células Cultivadas , Citidina Desaminase/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Switching de Imunoglobulina , Proteínas Inibidoras de Diferenciação/genética , Ativação Linfocitária , Camundongos , Transdução de Sinais
8.
Oncotarget ; 7(16): 21527-41, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26930717

RESUMO

The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that ß2 and ß5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-ß signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy.


Assuntos
Regulação para Baixo , Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Biocatálise/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular , Linhagem Celular Transformada , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Estimativa de Kaplan-Meier , Camundongos Nus , Inibidores de Proteassoma/farmacologia , Transplante Heterólogo
9.
Nat Immunol ; 16(7): 775-84, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25985234

RESUMO

Early B cell development is orchestrated by the combined activities of the transcriptional regulators E2A, EBF1, Foxo1 and Ikaros. However, how the genome-wide binding patterns of these regulators are modulated during B lineage development remains to be determined. Here we found that in lymphoid progenitor cells, the chromatin remodeler Brg1 specified the B cell fate. In committed pro-B cells, Brg1 regulated contraction of the locus encoding the immunoglobulin heavy chain (Igh) and controlled expression of the gene encoding the transcription factor c-Myc (Myc) to modulate the expression of genes encoding products that regulate ribosome biogenesis. In committed pro-B cells, Brg1 suppressed a pre-B lineage-specific pattern of gene expression. Finally, we found that Brg1 acted mechanistically to establish B cell fate and modulate cell growth by facilitating access of lineage-specific transcription factors to enhancer repertoires.


Assuntos
Linfócitos B/imunologia , Proliferação de Células , DNA Helicases/imunologia , Elementos Facilitadores Genéticos/imunologia , Proteínas Nucleares/imunologia , Fatores de Transcrição/imunologia , Animais , Linfócitos B/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Células Cultivadas , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/imunologia , DNA Helicases/genética , DNA Helicases/metabolismo , Elementos Facilitadores Genéticos/genética , Citometria de Fluxo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Hibridização in Situ Fluorescente , Camundongos Knockout , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo , Ligação Proteica/imunologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/imunologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Genes Dev ; 29(4): 409-25, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25691468

RESUMO

It is now well established that the E and Id protein axis regulates multiple steps in lymphocyte development. However, it remains unknown how E and Id proteins mechanistically enforce and maintain the naïve T-cell fate. Here we show that Id2 and Id3 suppressed the development and expansion of innate variant follicular helper T (TFH) cells. Innate variant TFH cells required major histocompatibility complex (MHC) class I-like signaling and were associated with germinal center B cells. We found that Id2 and Id3 induced Foxo1 and Foxp1 expression to antagonize the activation of a TFH transcription signature. We show that Id2 and Id3 acted upstream of the Hif1a/Foxo/AKT/mTORC1 pathway as well as the c-myc/p19Arf module to control cellular expansion. We found that mice depleted for Id2 and Id3 expression developed colitis and αß T-cell lymphomas. Lymphomas depleted for Id2 and Id3 expression displayed elevated levels of c-myc, whereas p19Arf abundance declined. Transcription signatures of Id2- and Id3-depleted lymphomas revealed similarities to genetic deficiencies associated with Burkitt lymphoma. We propose that, in response to antigen receptor and/or cytokine signaling, the E-Id protein axis modulates the activities of the PI3K-AKT-mTORC1-Hif1a and c-myc/p19Arf pathways to control cellular expansion and homeostatic proliferation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diferenciação Celular , Proteínas Inibidoras de Diferenciação/metabolismo , Linfoma/fisiopatologia , Linfócitos T Auxiliares-Indutores/citologia , Timócitos/citologia , Animais , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Tecido Linfoide/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição STAT1 , Serina-Treonina Quinases TOR/metabolismo
11.
Gut ; 64(2): 203-14, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24870620

RESUMO

OBJECTIVE: Gastric cancer (GC) remains difficult to cure due to heterogeneity in a clinical challenge and the molecular mechanisms underlying this disease are complex and not completely understood. Accumulating evidence suggests that microRNAs (miRNAs) play an important role in GC, but the role of specific miRNAs involved in this disease remains elusive. We performed next generation sequencing (NGS)-based whole-transcriptome profiling to discover GC-specific miRNAs, followed by functional validation of results. DESIGN: NGS-based miRNA profiles were generated in matched pairs of GCs and adjacent normal mucosa (NM). Quantitative RT-PCR validation of miR-29c expression was performed in 274 gastric tissues, which included two cohorts of matched GC and NM specimens. Functional validation of miR-29c and its gene targets was undertaken in cell lines, as well as K19-C2mE and K19-Wnt1/C2mE transgenic mice. RESULTS: NGS analysis revealed four GC-specific miRNAs. Among these, miR-29c expression was significantly decreased in GC versus NM tissues (p<0.001). Ectopic expression of miR-29c mimics in GC cell lines resulted in reduced proliferation, adhesion, invasion and migration. High miR-29c expression suppressed xenograft tumour growth in nude mice. Direct interaction between miR-29c and its newly discovered target, ITGB1, was identified in cell lines and transgenic mice. MiR-29c expression demonstrated a stepwise decrease in wild type hyperplasia-dysplasia cascade in transgenic mice models of GC. CONCLUSIONS: MiR-29c acts as a tumour suppressor in GC by directly targeting ITGB1. Loss of miR-29c expression is an early event in the initiation of gastric carcinogenesis and may serve as a diagnostic and therapeutic biomarker for patients with GC.


Assuntos
Carcinogênese/genética , Integrina beta1/genética , MicroRNAs/genética , Neoplasias Gástricas/genética , Animais , Carcinogênese/patologia , Adesão Celular/genética , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Camundongos Nus , Camundongos Transgênicos , Invasividade Neoplásica , Transplante de Neoplasias , RNA Neoplásico/genética , Neoplasias Gástricas/patologia , Transcriptoma , Células Tumorais Cultivadas
12.
PLoS One ; 9(11): e113765, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25429466

RESUMO

Amyloid A (AA) amyloidosis is a debilitating, often fatal, systemic amyloid disease associated with chronic inflammation and persistently elevated serum amyloid A (SAA). Elevated SAA is necessary but not sufficient to cause disease and the risk factors for AA amyloidosis remain poorly understood. Here we identify an extraordinarily high prevalence of AA amyloidosis (34%) in a genetically isolated population of island foxes (Urocyon littoralis) with concurrent chronic inflammatory diseases. Amyloid deposits were most common in kidney (76%), spleen (58%), oral cavity (45%), and vasculature (44%) and were composed of unbranching, 10 nm in diameter fibrils. Peptide sequencing by mass spectrometry revealed that SAA peptides were dominant in amyloid-laden kidney, together with high levels of apolipoprotein E, apolipoprotein A-IV, fibrinogen-α chain, and complement C3 and C4 (false discovery rate ≤ 0.05). Reassembled peptide sequences showed island fox SAA as an 111 amino acid protein, most similar to dog and artic fox, with 5 unique amino acid variants among carnivores. SAA peptides extended to the last two C-terminal amino acids in 5 of 9 samples, indicating that near full length SAA was often present in amyloid aggregates. These studies define a remarkably prevalent AA amyloidosis in island foxes with widespread systemic amyloid deposition, a unique SAA sequence, and the co-occurrence of AA with apolipoproteins.


Assuntos
Amiloidose/metabolismo , Amiloidose/veterinária , Vasos Sanguíneos/química , Raposas , Rim/química , Proteína Amiloide A Sérica/análise , Sequência de Aminoácidos , Amiloidose/epidemiologia , Amiloidose/patologia , Animais , Vasos Sanguíneos/patologia , California/epidemiologia , Espécies em Perigo de Extinção , Feminino , Ilhas , Rim/patologia , Masculino , Dados de Sequência Molecular , Boca/química , Boca/patologia , Prevalência , Proteômica , Isolamento Reprodutivo , Proteína Amiloide A Sérica/ultraestrutura , Baço/química , Baço/patologia
13.
Nat Immunol ; 15(8): 767-76, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24973820

RESUMO

Regulatory T (Treg) cells suppress the development of inflammatory disease, but our knowledge of transcriptional regulators that control this function remains incomplete. Here we show that expression of Id2 and Id3 in Treg cells was required to suppress development of fatal inflammatory disease. We found that T cell antigen receptor (TCR)-driven signaling initially decreased the abundance of Id3, which led to the activation of a follicular regulatory T (TFR) cell-specific transcription signature. However, sustained lower abundance of Id2 and Id3 interfered with proper development of TFR cells. Depletion of Id2 and Id3 expression in Treg cells resulted in compromised maintenance and localization of the Treg cell population. Thus, Id2 and Id3 enforce TFR cell checkpoints and control the maintenance and homing of Treg cells.


Assuntos
Inflamação/imunologia , Proteína 2 Inibidora de Diferenciação/imunologia , Proteínas Inibidoras de Diferenciação/imunologia , Linfócitos T Reguladores/imunologia , Animais , Sequência de Bases , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Movimento Celular/imunologia , Proliferação de Células , Feminino , Fatores de Transcrição Forkhead/biossíntese , Regulação da Expressão Gênica/imunologia , Proteínas de Fluorescência Verde/genética , Inflamação/genética , Proteína 2 Inibidora de Diferenciação/biossíntese , Proteína 2 Inibidora de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/biossíntese , Proteínas Inibidoras de Diferenciação/genética , Interleucina-10/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/imunologia , Receptores CXCR5/biossíntese , Análise de Sequência de RNA
14.
Hepatology ; 59(1): 202-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23913442

RESUMO

UNLABELLED: Hepatocellular carcinoma (HCC) is associated with poor survival for patients and few effective treatment options, raising the need for novel therapeutic strategies. MicroRNAs (miRNAs) play important roles in tumor development and show deregulated patterns of expression in HCC. Because of the liver's unique affinity for small nucleic acids, miRNA-based therapy has been proposed in the treatment of liver disease. Thus, there is an urgent need to identify and characterize aberrantly expressed miRNAs in HCC. In our study, we profiled miRNA expression changes in de novo liver tumors driven by MYC and/or RAS, two canonical oncogenes activated in a majority of human HCCs. We identified an up-regulated miRNA megacluster comprised of 53 miRNAs on mouse chromosome 12qF1 (human homolog 14q32). This miRNA megacluster is up-regulated in all three transgenic liver models and in a subset of human HCCs. An unbiased functional analysis of all miRNAs within this cluster was performed. We found that miR-494 is overexpressed in human HCC and aids in transformation by regulating the G1 /S cell cycle transition through targeting of the Mutated in Colorectal Cancer tumor suppressor. miR-494 inhibition in human HCC cell lines decreases cellular transformation, and anti-miR-494 treatment of primary MYC-driven liver tumor formation significantly diminishes tumor size. CONCLUSION: Our findings identify a new therapeutic target (miR-494) for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , MicroRNAs/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proliferação de Células , Transformação Celular Neoplásica , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação para Cima , Proteínas ras/metabolismo
15.
Proc Natl Acad Sci U S A ; 109(24): 9545-50, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22623531

RESUMO

MYC oncogene family members are broadly implicated in human cancers, yet are considered "undruggable" as they encode transcription factors. MYC also carries out essential functions in proliferative tissues, suggesting that its inhibition could cause severe side effects. We elected to identify synthetic lethal interactions with c-MYC overexpression (MYC-SL) in a collection of ~3,300 druggable genes, using high-throughput siRNA screening. Of 49 genes selected for follow-up, 48 were confirmed by independent retesting and approximately one-third selectively induced accumulation of DNA damage, consistent with enrichment in DNA-repair genes by functional annotation. In addition, genes involved in histone acetylation and transcriptional elongation, such as TRRAP and BRD4, were identified, indicating that the screen revealed known MYC-associated pathways. For in vivo validation we selected CSNK1e, a kinase whose expression correlated with MYCN amplification in neuroblastoma (an established MYC-driven cancer). Using RNAi and available small-molecule inhibitors, we confirmed that inhibition of CSNK1e halted growth of MYCN-amplified neuroblastoma xenografts. CSNK1e had previously been implicated in the regulation of developmental pathways and circadian rhythms, whereas our data provide a previously unknown link with oncogenic MYC. Furthermore, expression of CSNK1e correlated with c-MYC and its transcriptional signature in other human cancers, indicating potential broad therapeutic implications of targeting CSNK1e function. In summary, through a functional genomics approach, pathways essential in the context of oncogenic MYC but not to normal cells were identified, thus revealing a rich therapeutic space linked to a previously "undruggable" oncogene.


Assuntos
Genes myc , Genômica , Neoplasias/tratamento farmacológico , Caseína Quinase 1 épsilon/metabolismo , Humanos , Neoplasias/genética , RNA Interferente Pequeno
16.
Sci Transl Med ; 4(121): 121ra18, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22344686

RESUMO

Scarring of the kidney is a major public health concern, directly promoting loss of kidney function. To understand the role of microRNA (miRNA) in the progression of kidney scarring in response to injury, we investigated changes in miRNA expression in two kidney fibrosis models and identified 24 commonly up-regulated miRNAs. Among them, miR-21 was highly elevated in both animal models and in human transplanted kidneys with nephropathy. Deletion of miR-21 in mice resulted in no overt abnormality. However, miR-21(-/-) mice suffered far less interstitial fibrosis in response to kidney injury, a phenotype duplicated in wild-type mice treated with anti-miR-21 oligonucleotides. Global derepression of miR-21 target mRNAs was readily detectable in miR-21(-/-) kidneys after injury. Analysis of gene expression profiles up-regulated in the absence of miR-21 identified groups of genes involved in metabolic pathways, including the lipid metabolism pathway regulated by peroxisome proliferator-activated receptor-α (Pparα), a direct miR-21 target. Overexpression of Pparα prevented ureteral obstruction-induced injury and fibrosis. Pparα deficiency abrogated the antifibrotic effect of anti-miR-21 oligonucleotides. miR-21 also regulated the redox metabolic pathway. The mitochondrial inhibitor of reactive oxygen species generation Mpv17l was repressed by miR-21, correlating closely with enhanced oxidative kidney damage. These studies demonstrate that miR-21 contributes to fibrogenesis and epithelial injury in the kidney in two mouse models and is a candidate target for antifibrotic therapies.


Assuntos
Inativação Gênica , Rim/patologia , MicroRNAs/fisiologia , Animais , Fibrose , Humanos , Rim/metabolismo , Camundongos , Camundongos Knockout , Regulação para Cima
17.
J Clin Invest ; 121(7): 2921-31, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21646721

RESUMO

Plasma HDL levels have a protective role in atherosclerosis, yet clinical therapies to raise HDL levels have remained elusive. Recent advances in the understanding of lipid metabolism have revealed that miR-33, an intronic microRNA located within the SREBF2 gene, suppresses expression of the cholesterol transporter ABC transporter A1 (ABCA1) and lowers HDL levels. Conversely, mechanisms that inhibit miR-33 increase ABCA1 and circulating HDL levels, suggesting that antagonism of miR-33 may be atheroprotective. As the regression of atherosclerosis is clinically desirable, we assessed the impact of miR-33 inhibition in mice deficient for the LDL receptor (Ldlr-/- mice), with established atherosclerotic plaques. Mice treated with anti-miR33 for 4 weeks showed an increase in circulating HDL levels and enhanced reverse cholesterol transport to the plasma, liver, and feces. Consistent with this, anti-miR33-treated mice showed reductions in plaque size and lipid content, increased markers of plaque stability, and decreased inflammatory gene expression. Notably, in addition to raising ABCA1 levels in the liver, anti-miR33 oligonucleotides directly targeted the plaque macrophages, in which they enhanced ABCA1 expression and cholesterol removal. These studies establish that raising HDL levels by anti-miR33 oligonucleotide treatment promotes reverse cholesterol transport and atherosclerosis regression and suggest that it may be a promising strategy to treat atherosclerotic vascular disease.


Assuntos
Aterosclerose/metabolismo , HDL-Colesterol/metabolismo , MicroRNAs/antagonistas & inibidores , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Fígado/citologia , Fígado/fisiologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Distribuição Aleatória , Receptores de LDL/genética , Receptores de LDL/metabolismo
18.
PLoS Comput Biol ; 6(9)2010 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-20838583

RESUMO

Genetic interactions occur when a combination of mutations results in a surprising phenotype. These interactions capture functional redundancy, and thus are important for predicting function, dissecting protein complexes into functional pathways, and exploring the mechanistic underpinnings of common human diseases. Synthetic sickness and lethality are the most studied types of genetic interactions in yeast. However, even in yeast, only a small proportion of gene pairs have been tested for genetic interactions due to the large number of possible combinations of gene pairs. To expand the set of known synthetic lethal (SL) interactions, we have devised an integrative, multi-network approach for predicting these interactions that significantly improves upon the existing approaches. First, we defined a large number of features for characterizing the relationships between pairs of genes from various data sources. In particular, these features are independent of the known SL interactions, in contrast to some previous approaches. Using these features, we developed a non-parametric multi-classifier system for predicting SL interactions that enabled the simultaneous use of multiple classification procedures. Several comprehensive experiments demonstrated that the SL-independent features in conjunction with the advanced classification scheme led to an improved performance when compared to the current state of the art method. Using this approach, we derived the first yeast transcription factor genetic interaction network, part of which was well supported by literature. We also used this approach to predict SL interactions between all non-essential gene pairs in yeast (http://sage.fhcrc.org/downloads/downloads/predicted_yeast_genetic_interactions.zip). This integrative approach is expected to be more effective and robust in uncovering new genetic interactions from the tens of millions of unknown gene pairs in yeast and from the hundreds of millions of gene pairs in higher organisms like mouse and human, in which very few genetic interactions have been identified to date.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Área Sob a Curva , Bases de Dados Genéticas , Fenótipo , Curva ROC , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/classificação , Estatísticas não Paramétricas , Fatores de Transcrição/química , Fatores de Transcrição/classificação
19.
Cell Cycle ; 8(17): 2756-68, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19652553

RESUMO

The hypoxia-inducible factor (HIF) pathway is essential for cell survival under low oxygen and plays an important role in tumor cell homeostasis. We investigated the function of miR-210, the most prominent microRNA upregulated by hypoxia and a direct transcriptional target of HIFs. miR-210 expression was elevated in multiple cancer types and correlated with metastasis of breast and melanoma tumors. miR-210 overexpression in cancer cell lines bypassed hypoxia-induced cell cycle arrest and partially reversed the hypoxic gene expression signature. We identified MNT, a known MYC antagonist, as a miR-210 target. MNT mRNA contains multiple miR-210 binding sites in the 3' UTR and its knockdown phenocopied miR-210 overexpression. Furthermore, loss of MYC abolished miR-210-mediated override of hypoxia-induced cell cycle arrest. Comparison of miR-210 and MYC overexpression with MNT knockdown signatures also indicated that miR-210 triggered a "MYC-like" transcriptional response. Thus, miR-210 influences the hypoxia response in tumor cells through targeting a key transcriptional repressor of the MYC-MAX network.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Ciclo Celular , Hipóxia Celular , Linhagem Celular Tumoral , Análise por Conglomerados , Técnicas de Silenciamento de Genes , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/genética , Regulação para Cima
20.
Methods Mol Biol ; 563: 141-56, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19597784

RESUMO

Prioritization, or ranking, of gene lists is becoming increasingly important for analyzing data generated from high-throughput assays like expression profiling and RNAi-based screening. This is especially the case when specific genes in a list need to be further validated using low-throughput experiments. In addition to gene set overlap enrichment methods, a complementary approach is to examine molecular interaction networks. These can provide putative functional insights based on gene connectivity, especially when many genes contain little or no annotation. For bench and computational biologists alike, using networks requires an informed selection of interaction data for network construction and strategies for managing network complexity. Moreover, graph theory and social network analysis methods can be used to isolate critical subnetworks and quantify network properties. Here, I discuss the basic components of networks, implications of their structure for functional interpretation, and common metrics used for prioritization. Although this is still an ongoing area of research, networks are providing new ways for gauging pathway impact in large-scale data sets.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Genômica/métodos , Biologia de Sistemas/métodos , Bases de Dados Genéticas , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA