Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Ecotoxicol Environ Saf ; 276: 116302, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608381

RESUMO

Benzene is a known contributor to human leukaemia through its toxic effects on bone marrow cells, and epigenetic modification is believed to be a potential mechanism underlying benzene pathogenesis. However, the specific roles of N6-methyladenosine (m6A), a newly discovered RNA post-transcriptional modification, in benzene-induced hematotoxicity remain unclear. In this study, we identified self-renewing malignant proliferating cells in the bone marrow of benzene-exposed mice through in vivo bone marrow transplantation experiments and Competitive Repopulation Assay. Subsequent analysis using whole transcriptome sequencing and RNA m6A methylation sequencing revealed a significant upregulation of RNA m6A modification levels in the benzene-exposed group. Moreover, RNA methyltransferase METTL14, known as a pivotal player in m6A modification, was found to be aberrantly overexpressed in Lin-Sca-1+c-Kit+ (LSK) cells of benzene-exposed mice. Further analysis based on the GEO database showed a positive correlation between the expression of METTL14, mTOR, and GFI and benzene exposure dose. In vitro cellular experiments, employing experiments such as western blot, q-PCR, m6A RIP, and CLIP, validated the regulatory role of METTL14 on mTOR and GFI1. Mechanistically, continuous damage inflicted by benzene exposure on bone marrow cells led to the overexpression of METTL14 in LSK cells, which, in turn, increased m6A modification on the target genes' (mTOR and GFI1) RNA. This upregulation of target gene expression activated signalling pathways such as mTOR-AKT, ultimately resulting in malignant proliferation of bone marrow cells. In conclusion, this study offers insights into potential early targets for benzene-induced haematologic malignant diseases and provides novel perspectives for more targeted preventive and therapeutic strategies.


Assuntos
Adenosina/análogos & derivados , Benzeno , Metiltransferases , Benzeno/toxicidade , Animais , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Células Mieloides/efeitos dos fármacos , Células Mieloides/patologia , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Masculino
2.
Gastroenterology ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492894

RESUMO

BACKGROUND & AIMS: Because pancreatic cancer responds poorly to chemotherapy and immunotherapy, it is necessary to identify novel targets and compounds to overcome resistance to treatment. METHODS: This study analyzed genomic single nucleotide polymorphism sequencing, single-cell RNA sequencing, and spatial transcriptomics. Ehf-knockout mice, KPC (LSL-KrasG12D/+, LSL-Trp53R172H/+ and Pdx1-Cre) mice, CD45.1+ BALB/C nude mice, and CD34+ humanized mice were also used as subjects. Multiplexed immunohistochemistry and flow cytometry were performed to investigate the proportion of tumor-infiltrated C-X-C motif chemokine receptor 2 (CXCR2)+ neutrophils. In addition, multiplexed cytokines assays and chromatin immunoprecipitation assays were used to examine the mechanism. RESULTS: The TP53 mutation-mediated loss of tumoral EHF increased the recruitment of CXCR2+ neutrophils, modulated their spatial distribution, and further induced chemo- and immunotherapy resistance in clinical cohorts and preclinical syngeneic mice models. Mechanistically, EHF deficiency induced C-X-C motif chemokine ligand 1 (CXCL1) transcription to enhance in vitro and in vivo CXCR2+ neutrophils migration. Moreover, CXCL1 or CXCR2 blockade completely abolished the effect, indicating that EHF regulated CXCR2+ neutrophils migration in a CXCL1-CXCR2-dependent manner. The depletion of CXCR2+ neutrophils also blocked the in vivo effects of EHF deficiency on chemotherapy and immunotherapy resistance. The single-cell RNA-sequencing results of PDAC treated with Nifurtimox highlighted the therapeutic significance of Nifurtimox by elevating the expression of tumoral EHF and decreasing the weightage of CXCL1-CXCR2 pathway within the microenvironment. Importantly, by simultaneously inhibiting the JAK1/STAT1 pathway, it could significantly suppress the recruitment and function of CXCR2+ neutrophils, further sensitizing PDAC to chemotherapy and immunotherapies. CONCLUSIONS: The study demonstrated the role of EHF in the recruitment of CXCR2+ neutrophils and the promising role of Nifurtimox in sensitizing pancreatic cancer to chemotherapy and immunotherapy.

3.
Oncogene ; 43(11): 776-788, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243080

RESUMO

Rapid development of drug resistance after chemotherapy is a major cause of treatment failure in individuals with pancreatic ductal adenocarcinoma (PDAC). In this study, we illustrate that tumor-derived interleukin 35 (IL-35) mediates the accelerated resistance of PDAC to gemcitabine (GEM). We observe that GEM resistance can spread from GEM-resistant PDAC cells to GEM-sensitive cells, and that IL-35 is responsible for the propagation of chemoresistance, which is supported by sequencing and experimental data. Additionally, we discover that GEM-resistant cells have significantly higher levels of IL-35 expression. Mechanistically, aberrantly expressed IL-35 triggers transcriptional activation of SOD2 expression via GP130-STAT1 signaling, scavenging reactive oxygen species (ROS) and leading to GEM resistance. Furthermore, GEM treatment stimulates IL-35 expression through activation of the NF-κB pathway, resulting in acquired chemoresistance. In the mouse model, a neutralizing antibody against IL-35 enhances the tumor suppressive effect of GEM. Collectively, our data suggests that IL-35 is critical in mediating GEM resistance in pancreatic cancer, and therefore could be a valuable therapeutic target in overcoming PDAC chemoresistance.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Gencitabina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Interleucinas/genética , Linhagem Celular Tumoral
5.
J Exp Clin Cancer Res ; 42(1): 238, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697370

RESUMO

BACKGROUND: Gemcitabine (GEM)-based chemotherapy is the first-line option for pancreatic ductal adenocarcinoma (PDAC). However, the development of drug resistance limits its efficacy, and the specific mechanisms remain largely unknown. RUNX1, a key transcription factor in hematopoiesis, also involved in the malignant progression of PDAC, but was unclear in the chemoresistance of PDAC. METHODS: Comparative analysis was performed to screen GEM-resistance related genes using our single-cell RNA sequencing(scRNA-seq) data and two public RNA-sequencing datasets (GSE223463, GSE183795) for PDAC. The expression of RUNX1 in PDAC tissues was detected by qRT-PCR, immunohistochemistry (IHC) and western blot. The clinical significance of RUNX1 in PDAC was determined by single-or multivariate analysis and survival analysis. We constructed the stably expressing cell lines with shRUNX1 and RUNX1, and successfully established GEM-resistant cell line. The role of RUNX1 in GEM resistance was determined by CCK8 assay, plate colony formation assay and apoptosis analysis in vitro and in vivo. To explore the mechanism, we performed bioinformatic analysis using the scRNA-seq data to screen for the endoplasm reticulum (ER) stress signaling that was indispensable for RUNX1 in GEM resistance. We observed the cell morphology in ER stress by transmission electron microscopy and validated RUNX1 in gemcitabine resistance depended on the BiP/PERK/eIF2α pathway by in vitro and in vivo oncogenic experiments, using ER stress inhibitor(4-PBA) and PERK inhibitor (GSK2606414). The correlation between RUNX1 and BiP expression was assessed using the scRNA-seq data and TCGA dataset, and validated by RT-PCR, immunostaining and western blot. The mechanism of RUNX1 regulation of BiP was confirmed by ChIP-PCR and dual luciferase assay. Finally, the effect of RUNX1 inhibitor on PDAC was conducted in vivo mouse models, including subcutaneous xenograft and patient-derived xenograft (PDX) mouse models. RESULTS: RUNX1 was aberrant high expressed in PDAC and closely associated with GEM resistance. Silencing of RUNX1 could attenuate resistance in GEM-resistant cell line, and its inhibitor Ro5-3335 displayed an enhanced effect in inhibiting tumor growth, combined with GEM treatment, in PDX mouse models and GEM-resistant xenografts. In detail, forced expression of RUNX1 in PDAC cells suppressed apoptosis induced by GEM exposure, which was reversed by the ER stress inhibitor 4-PBA and PERK phosphorylation inhibitor GSK2606414. RUNX1 modulation of ER stress signaling mediated GEM resistance was supported by the analysis of scRNA-seq data. Consistently, silencing of RUNX1 strongly inhibited the GEM-induced activation of BiP and PERK/eIF2α signaling, one of the major pathways involved in ER stress. It was identified that RUNX1 directly bound to the promoter region of BiP, a primary ER stress sensor, and stimulated BiP expression to enhance the reserve capacity for cell adaptation, which in turn facilitated GEM resistance in PDAC cells. CONCLUSIONS: This study identifies RUNX1 as a predictive biomarker for response to GEM-based chemotherapy. RUNX1 inhibition may represent an effective strategy for overcoming GEM resistance in PDAC cells.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Gencitabina , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Fatores de Iniciação de Peptídeos , Neoplasias Pancreáticas
6.
Signal Transduct Target Ther ; 8(1): 271, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37443111

RESUMO

VEGF inhibitors are one of the most successful antiangiogenic drugs in the treatment of many solid tumors. Nevertheless, pancreatic adenocarcinoma (PAAD) cells can reinstate tumor angiogenesis via activation of VEGF-independent pathways, thereby conferring resistance to VEGF inhibitors. Bioinformatic analysis showed that BICC1 was one of the top genes involved in the specific angiogenesis process of PAAD. The analysis of our own cohort confirmed that BICC1 was overexpressed in human PAAD tissues and was correlated to increased microvessel density and tumor growth, and worse prognosis. In cells and mice with xenograft tumors, BICC1 facilitated angiogenesis in pancreatic cancer in a VEGF-independent manner. Mechanistically, as an RNA binding protein, BICC1 bounds to the 3'UTR of Lipocalin-2 (LCN2) mRNA and post-transcriptionally up-regulated LCN2 expression in PAAD cells. When its level is elevated, LCN2 binds to its receptor 24p3R, which directly phosphorylates JAK2 and activates JAK2/STAT3 signal, leading to increased production of an angiogenic factor CXCL1. Blocking of the BICC1/LCN2 signalling reduced the microvessel density and tumor volume of PAAD cell grafts in mice, and increased the tumor suppressive effect of gemcitabine. In conclusion, BICC1 plays a pivotal role in the process of VEGF-independent angiogenesis in pancreatic cancer, leading to resistance to VEGF inhibitors. BICC1/LCN2 signaling may serve as a promising anti-angiogenic therapeutic target for pancreatic cancer patients.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Neoplasias Pancreáticas/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Adenocarcinoma/genética , Proteínas de Ligação a RNA
7.
Cancer Biol Med ; 20(8)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37381714

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant gastrointestinal cancer with a 5-year survival rate of only 9%. Of PDAC patients, 15%-20% are eligible for radical surgery. Gemcitabine is an important chemotherapeutic agent for patients with PDAC; however, the efficacy of gemcitabine is limited due to resistance. Therefore, reducing gemcitabine resistance is essential for improving survival of patients with PDAC. Identifying the key target that determines gemcitabine resistance in PDAC and reversing gemcitabine resistance using target inhibitors in combination with gemcitabine are crucial steps in the quest to improve survival prognosis in patients with PDAC. METHODS: We constructed a human genome-wide CRISPRa/dCas 9 overexpression library in PDAC cell lines to screen key targets of drug resistance based on sgRNA abundance and enrichment. Then, co-IP, ChIP, ChIP-seq, transcriptome sequencing, and qPCR were used to determine the specific mechanism by which phospholipase D1 (PLD1) confers resistance to gemcitabine. RESULTS: PLD1 combines with nucleophosmin 1 (NPM1) and triggers NPM1 nuclear translocation, where NPM1 acts as a transcription factor to upregulate interleukin 7 receptor (IL7R) expression. Upon interleukin 7 (IL-7) binding, IL7R activates the JAK1/STAT5 signaling pathway to increase the expression of the anti-apoptotic protein, BCL-2, and induce gemcitabine resistance. The PLD1 inhibitor, Vu0155069, targets PLD1 to induce apoptosis in gemcitabine-resistant PDAC cells. CONCLUSIONS: PLD1 is an enzyme that has a critical role in PDAC-associated gemcitabine resistance through a non-enzymatic interaction with NPM1, further promoting the downstream JAK1/STAT5/Bcl-2 pathway. Inhibiting any of the participants of this pathway can increase gemcitabine sensitivity.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Gencitabina , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Interleucina-7/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/farmacologia , Neoplasias Pancreáticas
8.
Int J Surg ; 109(6): 1573-1583, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132194

RESUMO

BACKGROUND: Neoadjuvant therapy remains controversial in treating resectable pancreatic ductal adenocarcinoma (PDAC) patients. This study aims to assess the impact of neoadjuvant therapy on survival in patients with PDAC according to their clinical stage. METHODS: Patients with resected clinical Stage I-III PDAC from 2010 to 2019 were identified in the surveillance, epidemiology, and end results database. A propensity score matching method was utilized within each stage to reduce potential selection bias between patients who underwent neoadjuvant chemotherapy followed by surgery and patients who underwent upfront surgery. An overall survival (OS) analysis was performed using the Kaplan-Meier method and a multivariate Cox proportional hazards model. RESULTS: A total of 13 674 patients were included in the study. The majority of the patients ( N =10 715, 78.4%) underwent upfront surgery. Patients receiving neoadjuvant therapy followed by surgery had significantly longer OS than those with upfront surgery. Subgroup analysis revealed that the neoadjuvant chemoradiotherapy group's OS is comparable to neoadjuvant chemotherapy. In clinical Stage IA PDAC, there was no difference in survival between the neoadjuvant treatment and upfront surgery groups before or after matching. In stage IB-III patients, neoadjuvant therapy followed by surgery improved OS before and after matching compared to upfront surgery. The results revealed the same OS benefits using the multivariate Cox proportional hazards model. CONCLUSION: Neoadjuvant therapy followed by surgery could improve OS over upfront surgery in Stage IB-III PDAC but did not provide a significant survival advantage in Stage IA PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Terapia Neoadjuvante/métodos , Estudos Retrospectivos , Quimioterapia Adjuvante/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/cirurgia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/cirurgia , Pancreatectomia/métodos , Neoplasias Pancreáticas
9.
J Exp Clin Cancer Res ; 42(1): 111, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143164

RESUMO

BACKGROUND: Chemoresistance is the main reason for the poor prognosis of pancreatic ductal adenocarcinoma (PDAC). Thus, there is an urgent need to screen out new targets and compounds to reverse chemotherapeutic resistance. METHODS: We established a bio-bank of human PDAC organoid models, covering a representative range of PDAC tumor subtypes. We screened a library of 1304 FDA-approved compounds to identify candidates efficiently overcoming chemotherapy resistance. The effects of the compounds were evaluated with a CellTiter-Glo-3D assay, organoid apoptosis assay and in vivo patient-derived xenograft (PDX), patient-derived organoid (PDO) and LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre (KPC) genetically engineered mouse models. RNA-sequencing, genome editing, sphere formation assays, iron assays and luciferase assays were conducted to elucidate the mechanism. RESULTS: High-throughput drug screening of chemotherapy-resistant PDOs identified irbesartan, an angiotensin ‖ type 1 (AT1) receptor antagonist, which could synergistically enhance the ability of chemotherapy to kill PDAC cells. In vitro and in vivo validation using PDO, PDX and KPC mouse models showed that irbesartan efficiently sensitized PDAC tumors to chemotherapy. Mechanistically, we found that irbesartan decreased c-Jun expression by inhibiting the Hippo/YAP1 pathway and further overcame chemotherapy resistance in PDAC. We also explored c-Jun, a potential target of irbesartan, which can transcriptionally upregulate the expression of key genes involved in stemness maintenance (SOX9/SOX2/OCT4) and iron metabolism (FTH1/FTL/TFRC). More importantly, we observed that PDAC patients with high levels of c-Jun expression demonstrated poor responses to the current standard chemotherapy regimen (gemcitabine plus nab-paclitaxel). Moreover, patients with PDAC had significant survival benefits from treatment with irbesartan plus a standard chemotherapy regimen in two-center retrospective clinical cohorts and patients with high c-Jun expression exhibited a better response to combination chemotherapy. CONCLUSIONS: Irbesartan could be used in combination with chemotherapy to improve the therapeutic efficacy in PDAC patients with high levels of c-Jun expression. Irbesartan effectively inhibited chemotherapy resistance by suppressing the Hippo/YAP1/c-Jun/stemness/iron metabolism axis. Based on our findings, we are designing an investigator-initiated phase II clinical trial on the efficacy and safety of irbesartan plus a standard gemcitabine/nab-paclitaxel regimen in the treatment of patients with advanced III/IV staged PDAC and are hopeful that we will observe patient benefits.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Gencitabina , Irbesartana/uso terapêutico , Estudos Retrospectivos , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Linhagem Celular Tumoral , Neoplasias Pancreáticas
10.
Gut ; 72(9): 1722-1737, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36828627

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal tumour with limited treatment options. Here, we identified syndecan binding protein (SDCBP), also known as syntenin1, as a novel targetable factor in promoting PDAC tumour progression. We also explored a therapeutic strategy for suppressing SDCBP expression. DESIGN: We used samples from patients with PDAC, human organoid models, LSL-KrasG12D/+mice, LSL-Trp53R172H/+ and Pdx1-Cre (KPC) mouse models, and PDX mouse models. Immunostaining, colony formation assay, ethynyl-2-deoxyuridine incorporation assay, real-time cell analysis, cell apoptosis assay, automated cell tracking, invadopodia detection and gelatin degradation assays, coimmunoprecipitation, and pull-down assays were performed in this study. RESULTS: The median overall survival and recurrence-free survival rates in the high-SDCBP group were significantly shorter than those in the low-SDCBP group. In vitro and in vivo studies have demonstrated that SDCBP promotes PDAC proliferation and metastasis. Mechanically, SDCBP inhibits CK1δ/ε-mediated YAP-S384/S387 phosphorylation, which further suppresses ß-TrCP-mediated YAP1 ubiquitination and proteasome degradation by directly interacting with YAP1. SDCBP interacts with the TAD domain of YAP1, mainly through its PDZ1 domain. Preclinical KPC mouse cohorts demonstrated that zinc pyrithione (ZnPT) suppresses PDAC tumour progression by suppressing SDCBP. CONCLUSIONS: SDCBP promotes the proliferation and metastasis of PDAC by preventing YAP1 from ß-TrCP-mediated proteasomal degradation. Therefore, ZnPT could be a promising therapeutic strategy to inhibit PDAC progression by suppressing SDCBP.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Neoplasias Pancreáticas/patologia , Pâncreas/patologia , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Sinteninas/metabolismo , Neoplasias Pancreáticas
11.
Adv Sci (Weinh) ; 10(6): e2206335, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563135

RESUMO

CD73, a cell surface-bound nucleotidase, facilitates extracellular adenosine formation by hydrolyzing 5'-AMP to adenosine. Several studies have shown that CD73 plays an essential role in immune escape, cell proliferation and tumor angiogenesis, making it an attractive target for cancer therapies. However, there are limited clinical benefits associated with the mainstream enzymatic inhibitors of CD73, suggesting that the mechanism underlying the role of CD73 in tumor progression is more complex than anticipated, and further investigation is necessary. In this study, CD73 is found to overexpress in the cytoplasm of pancreatic ductal adenocarcinoma (PDAC) cells and promotes metastasis in a nucleotidase-independent manner, which cannot be restrained by the CD73 monoclonal antibodies or small-molecule enzymatic inhibitors. Furthermore, CD73 promotes the metastasis of PDAC by binding to the E3 ligase TRIM21, competing with the Snail for its binding site. Additionally, a CD73 transcriptional inhibitor, diclofenac, a non-steroidal anti-inflammatory drug, is more effective than the CD73 blocking antibody for the treatment of PDAC metastasis. Diclofenac also enhances the therapeutic efficacy of gemcitabine in the spontaneous KPC (LSL-KrasG12D/+ , LSL-Trp53R172H/+ , and Pdx-1-Cre) pancreatic cancer model. Therefore, diclofenac may be an effective anti-CD73 therapy, when used alone or in combination with gemcitabine-based chemotherapy regimen, for metastatic PDAC.


Assuntos
Carcinoma Ductal Pancreático , Nucleotidases , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Gencitabina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas
12.
J Exp Clin Cancer Res ; 41(1): 330, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36419136

RESUMO

BACKGROUND: Glycolysis metabolism is an attractive target for cancer therapy. Reprogramming metabolic pathways could improve the ability of metabolic inhibitors to suppress cancers with limited treatment options. The ubiquitin-proteasome system facilitates the turnover of most intracellular proteins with E3 ligase conferring the target selection and specificity. Ubiquitin protein ligase E3 component N-recognin 7 (UBR7), among the least studied E3 ligases, recognizes its substrate through a plant homeodomain (PHD) finger. Here, we bring into focus on its suppressive role in glycolysis and HCC tumorigenesis, dependent on its E3 ubiquitin ligase activity toward monoubiquitination of histone H2B at lysine 120 (H2BK120ub). METHODS: In this study, we carried out high-throughput RNAi screening to identify epigenetic candidates in regulating lactic acid and investigated its possible roles in HCC progression. RESULTS: UBR7 loss promotes HCC tumorigenesis both in vitro and in vivo. UBR7 inhibits glycolysis by indirectly suppressing HK2 expression, a downstream target of Nrf2/Bach1 axis. Mechanically, UBR7 regulates H2BK120ub to bind to Keap1 promoter through H2BK120ub monoubiquitination, thereby modulating Keap1 expression and downstream Nrf2/Bach1/HK2 signaling. Pharmaceutical and genetic inhibition of glycolytic enzymes attenuate the promoting effect of UBR7 deficiency on tumor growth. In addition, methyltransferase ALKBH5, downregulated in HCC, regulated UBR7 expression in an m6A-dependent manner. CONCLUSIONS: These results collectively establish UBR7 as a critical negative regulator of aerobic glycolysis and HCC tumorigenesis through regulation of the Keap1/Nrf2/Bach1/HK2 axis, providing a potential clinical and therapeutic target for the HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Carcinogênese/genética , Glicólise , Transformação Celular Neoplásica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
13.
Cancer Lett ; 548: 215864, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981571

RESUMO

Gemcitabine (GEM) resistance is one of the major causes of treatment failure in pancreatic ductal adenocarcinoma (PDAC) in clinic. Here, through CRISPR/Cas9 activation library screen, we found that MTA3 mediates the GEM resistance of PDAC and thus might be a potential therapeutic target for combination chemotherapy. The CRISPR library screening showed that MTA3 is the most enriched gene in the surviving GEM-treated cells, and bioinformatic and histology analysis implied its high correlation with GEM resistance. MTA3 promoted GEM resistance of PDAC cells in in vitro and in vivo experiments. Mechanistically, as a component of the Mi-2/nucleosome remodeling and deacetylase transcriptional repression complex, MTA3 transcriptionally represses CRIP2, a transcriptional repressor of NF-κB/p65, activating NF-κB signaling and consequently leading to GEM resistance. Furthermore, the treatment of GEM increases MTA3 expression in PDAC cells via activating STAT3 signaling, thereby inducing the acquired chemoresistance of PDAC to GEM. In patients derived xenografts (PDX) mouse model, Colchicine suppresses the expression of MTA3 and increases the sensitivity of tumor cells to GEM. Based on these findings, MTA3 plays a key role in GEM resistance in pancreatic cancer and is a promising therapeutic target for reversing GEM chemotherapy resistance.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Colchicina , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Proteínas com Domínio LIM/genética , Camundongos , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Nucleossomos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina , Neoplasias Pancreáticas
14.
Cell Death Dis ; 13(3): 206, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246504

RESUMO

Aerobic glycolysis (the Warburg effect) has been demonstrated to facilitate tumor progression by producing lactate, which has important roles as a proinflammatory and immunosuppressive mediator. However, how aerobic glycolysis is directly regulated is largely unknown. Here, we show that ectopic Zeb1 directly increases the transcriptional expression of HK2, PFKP, and PKM2, which are glycolytic rate-determining enzymes, thus promoting the Warburg effect and breast cancer proliferation, migration, and chemoresistance in vitro and in vivo. In addition, Zeb1 exerts its biological effects to induce glycolytic activity in response to hypoxia via the PI3K/Akt/HIF-1α signaling axis, which contributes to fostering an immunosuppressive tumor microenvironment (TME). Mechanistically, breast cancer cells with ectopic Zeb1 expression produce lactate in the acidic tumor milieu to induce the alternatively activated (M2) macrophage phenotype through stimulation of the PKA/CREB signaling pathway. Clinically, the expression of Zeb1 is positively correlated with dysregulation of aerobic glycolysis, accumulation of M2-like tumor-associated macrophages (TAMs) and a poor prognosis in breast cancer patients. In conclusion, these findings identify a Zeb1-dependent mechanism as a driver of breast cancer progression that acts by stimulating tumor-macrophage interplay, which could be a viable therapeutic target for the treatment of advanced human cancers.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Glicólise/genética , Humanos , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Microambiente Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
15.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35270034

RESUMO

In recent years, three PARP inhibitors and three CDK4/6 inhibitors have been approved by the FDA for the treatment of recurrent ovarian cancer and advanced ER-positive breast cancer, respectively. However, the clinical benefits of the PARPi or CDK4/6i monotherapy are not as satisfied as expected and benefit only a fraction of patients. Current studies have shown therapeutic synergy for combinations of PARPi and CDK4/6i in breast and ovarian cancers with homologous recombination (HR) proficiency, which represents a new synthetic lethal strategy for treatment of these cancers regardless HR status. Thus, any compounds or strategies that can combine PARP and CDK4/6 inhibition will likely have great potential in improving clinic outcomes and in benefiting more patients. In this study, we developed a novel compound, ZC-22, that effectively inhibited both PARP and CDK4/6. This dual-targeting compound significantly inhibited breast and ovarian cancer cells by inducing cell cycle arrest and severe DNA damage both in vitro and in vivo. Interestingly, the efficacy of ZC-22 is even higher than the combination of PARPi Olaparib and CDK4/6i Abemaciclib in most breast and ovarian cancer cells, suggesting that it may be an effective alternative for the PARPi and CDK4/6i combination therapy. Moreover, ZC-22 sensitized breast and ovarian cancer cells to cisplatin treatment, a widely used chemotherapeutic agent. Altogether, our study has demonstrated the potency of a novel CDK4/6 and PARP dual inhibitor, which can potentially be developed into a monotherapy or combinatorial therapy with cisplatin for breast and ovarian cancer patients with HR proficiency.


Assuntos
Antineoplásicos , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Epitelial do Ovário/tratamento farmacológico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Quinase 4 Dependente de Ciclina , Feminino , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
16.
Front Oncol ; 12: 841819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265528

RESUMO

Objective: Some patients with pancreatic ductal adenocarcinoma (PDAC) are prone to rapid recurrence or metastasis after radical resection. However, evaluation methods for effectively identifying these patients are lacking. In this study, we established perioperative serum scoring systems to screen patients with early recurrence and poor prognosis. Methods: We systematically analysed 44 perioperative serum parameters, including systemic inflammatory parameters, coagulation system parameters, tumor markers, and 18 clinicopathological characteristics of 218 patients with radical resection in our centre. Univariate Cox regression and LASSO regression models were used to screen variables. Kaplan-Meier survival analysis was used to compare relapse-free survival and overall survival. Multivariate Cox regression was used to evaluate the independent risk variables. AUC and C-index were used to reveal the effectiveness of the models. In addition, the effectiveness was also verified in an independent cohort of 109 patients. Results: Preoperative systemic immune coagulation cascade (SICC) (including increased neutrophil to lymphocyte ratio, decreased lymphocyte to monocyte ratio, increased platelet and fibrinogen) and increased postoperative tumor markers (TMs) (CA199, CEA and CA242) were independent risk factors for early recurrence of resectable pancreatic cancer. On this basis, we established the preoperative SICC score and postoperative TMs score models. The patients with higher preoperative SICC or postoperative TMs score were more likely to have early relapse and worse prognosis. The nomogram based on preoperative SICC, postoperative TMs, CACI, smoking index, vascular cancer embolus and adjuvant chemotherapy can effectively evaluate the recurrence rate (AUC1 year: 0.763, AUC2 year: 0.679, AUC3 year: 0.657) and overall survival rate (AUC1 year: 0.770, AUC3 year: 0.804, AUC5 year: 0.763). Conclusion: Preoperative SICC and postoperative TMs can help identify resectable PDAC patients with early recurrence and poor prognosis.

17.
Cancer Res ; 81(12): 3358-3373, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33853832

RESUMO

When recruited to promoters, histone 3 lysine 4 (H3K4) methyltransferases KMT2 (KMT2A-D) activate transcription by opening chromatin through H3K4 methylation. Here, we report that KMT2 mutations occur frequently in non-small cell lung cancer (NSCLC) and are associated with high mutation loads and poor survival. KMT2C regulated DNA damage responses (DDR) through direct recruitment to DNA damage sites by Ago2 and small noncoding DNA damage response RNA, where it mediates H3K4 methylation, chromatin relaxation, secondary recruitment of DDR factors, and amplification of DDR signals along chromatin. Furthermore, by disrupting homologous recombination (HR)-mediated DNA repair, KMT2C/D mutations sensitized NSCLC to Poly(ADP-ribose) polymerase inhibitors (PARPi), whose efficacy is unclear in NSCLC due to low BRCA1/2 mutation rates. These results demonstrate a novel, transcription-independent role of KMT2C in DDR and identify high-frequency KMT2C/D mutations as much-needed biomarkers for PARPi therapies in NSCLC and other cancers with infrequent BRCA1/2 mutations. SIGNIFICANCE: This study uncovers a critical role for KMT2C in DDR via direct recruitment to DNA damage sites, identifying high-frequency KMT2C/D mutations as biomarkers for response to PARP inhibition in cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Mutação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Apoptose , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Proteínas de Ligação a DNA/genética , Feminino , Recombinação Homóloga , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cancers (Basel) ; 13(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808696

RESUMO

Growing evidence suggests that cisplatin and other chemotherapeutic agents promote tumor metastasis while inhibiting tumor growth, which is a critical issue for certain patients in clinical practices. However, the role of chemotherapeutics in promoting tumor metastasis and the molecular mechanism involved are unclear. Here, we investigated the roles of cisplatin in promoting tumor metastasis in lung adenocarcinoma (LUAD). We demonstrated that cisplatin promoted epithelial-mesenchymal transition (EMT), cell motility, and metastasis in vitro and in vivo. The bioinformatic analysis and molecular biology approaches also indicated that DCBLD2 (Discoidin, CUB and LCCL domain containing 2) is a key gene that mediates cisplatin-induced metastasis. DCBLD2 stabilizes ß-catenin by phosphorylating GSK3ß and transporting accumulated ß-catenin to the nucleus to promote the expression of EMT-related transcriptional factors (TFs), ultimately resulting in tumor metastasis. We also identified that cisplatin enhanced DCBLD2 expression by phosphorylating ERK and hence the AP-1-driven transcription of DCBLD2. Furthermore, DCBLD2-specific siRNAs encapsulated by nanocarriers prominently inhibit cisplatin-induced metastasis in vivo. Therefore, DCBLD2 plays a key role in cisplatin-induced metastasis in LUAD and is a potential target for preventing chemotherapy-induced metastasis in vivo.

19.
J Oncol ; 2021: 6617700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33564307

RESUMO

Hepatocellular carcinoma (HCC), the most common primary liver cancer, relies on the formation of new blood vessel for growth and frequent intrahepatic and extrahepatic metastasis. Therefore, it is important to explore the underlying molecular mechanisms of tumor angiogenesis of HCC. Recently, microRNAs have been shown to modulate angiogenic processes by modulating the expression of critical angiogenic factors. However, the potential roles of tumor-derived exosomal microRNAs in regulating tumor angiogenesis remain to be elucidated. In this study, our miRNome sequencing demonstrated that miR-1290 was overexpressed in HCC patient serum-derived exosomes, and we found that delivery of miR-1290 into human endothelial cells enhanced their angiogenic ability. Our results further revealed that SMEK1 is a direct target of miR-1290 in endothelial cells. MiR-1290 exerted its proangiogenic function, at least in part, by alleviating the inhibition of VEGFR2 phosphorylation done by SMEK1. Collectively, our findings provide evidence that miR-1290 is overexpressed in HCC and promotes tumor angiogenesis via exosomal secretion, implicating its potential role as a therapeutic target for HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA