Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Insect Sci ; 20(3)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32501501

RESUMO

Plant-derived compounds are sources of biopesticides for the control of insect pests. We compared the growth performance and enzymatic response of the grasshopper Calliptamus abbreviatus Ikonn to six plant-derived compounds (rutin, quercetin, nicotine, matrine, azadirachtin, and rotenone) in laboratory and field trials. When exposed to the six compounds, C. abbreviatus had significantly reduced growth and survival. All the compounds significantly induced an elevated level of reactive oxygen species, indicating oxidative damage. The activity of detoxifying enzymes, including cytochrome P450s, carboxylesterase, glutathione-S-transferase, and UDP-glucuronosyltransferase, and the antioxidant enzymes, including superoxide dismutase, catalase, and peroxidase, all significantly increased after exposure to the six compounds. These data suggest that the six plant-derived compounds had negative effects on C. abbreviatus. Of the six compounds, matrine, azadirachtin, and rotenone were more toxic to C. abbreviatus, followed by nicotine, quercetin, and rutin. These results show the potential of these compounds as botanical pesticides, which can be applied for the biological control of the grasshopper C. abbreviatus.


Assuntos
Dieta , Gafanhotos , Inseticidas , Animais , Feminino , Gafanhotos/enzimologia , Gafanhotos/crescimento & desenvolvimento , Inseticidas/classificação , Ninfa/enzimologia , Ninfa/crescimento & desenvolvimento , Distribuição Aleatória
2.
Front Physiol ; 11: 52, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153418

RESUMO

Rutin, a widely distributed phytochemical flavonoid, can be used to control insect pests. In this study, we studied the growth performance of the grasshopper Oedaleus asiaticus Bey-Bienko given xenobiotic rutin using feeding experiments and transcriptomic analysis. O. asiaticus had reduced body size, lower survival rate, and reduced growth performance when fed with xenobiotic rutin. Rutin-fed nymphs had large variation in gene expression profiles, with a total of 308 genes significantly upregulated and 287 genes downregulated. The upregulated genes were significantly enriched in stress resistance-, immune-, and detoxification-related biological processes and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Downregulated genes mainly involved cuticle biosynthesis and nutrition metabolism-related pathways. The quantitative real-time PCR (qRT-PCR) analysis of 15 candidate genes also produced results consistent with the transcriptome data. These results suggested that grasshoppers' capacity for biosynthesis and nutrition metabolism decreased, and stress resistance and metabolized capacity to toxic substances were significantly induced when O. asiaticus was fed on xenobiotic rutin. Rutin, as a phytotoxin, had detrimental effects and induced changes in gene expression profiles for O. asiaticus. This study can provide a molecular basis and offer future opportunities for the development of rutin-related insecticides and their application to grasshopper control.

3.
J Econ Entomol ; 112(3): 1175-1182, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30916750

RESUMO

Flavonoids are secondary metabolites that help plants resist insect attack, but pest insects have evolved enzymes that reduce the toxicity of these secondary metabolites. We studied the response of the grasshopper Oedaleus asiaticus Bey-Bienko fed different concentrations of quercetin, a representative flavonoid. Oedaleus asiaticus growth (survival rate and growth rate) was significantly reduced at high quercetin concentrations. Reactive oxygen species (ROS) increased significantly in response to the diet stress associated with high quercetin concentrations. Gene expression and protein phosphorylation level of the IGF→FOXO cascade related to the stress response in the O. asiaticus insulin-like signaling pathway (ILP) were also reduced. Multiple protective enzyme activities were regulated by FOXO. Mixed-function oxidase (MFO), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), were all significantly increased with exposure to high quercetin concentrations. Quercetin negatively regulated the ILP pathway, and was detrimental to O. asiaticus growth and survival, as more energy was required for detoxification. This study showed how flavonoids impact on O. asiaticus biochemical pathways, physiology, and development. Flavonoids offer a new option for the development of biological pesticides for application to grasshopper biological control.


Assuntos
Gafanhotos , Animais , Crescimento e Desenvolvimento , Plantas , Quercetina , Transdução de Sinais
4.
Environ Sci Pollut Res Int ; 26(8): 8312-8324, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30706274

RESUMO

Protein tyrosine phosphatase (PTPs) and protein tyrosine kinase (PTKs) genes are responsible for the regulation of insect insulin-like pathway (ILP), cells growth, metabolism initiation, gene transcription and observing immune response. Signal transduction in insect cell is also associated with PTPs and PTKs. The grasshopper (Oedaleus asiaticus) 'Bey-Bienko' were treated with dsRNA of protein tyrosine non-receptor type 4 (PTPN4) and protein tyrosine kinase 5 (PTK5) along with control (water). Applying dsPTK5 treatments in 5th instar of Oedaleus asiaticus, significant reduction was recorded in body dry mass, growth rate and overall performance except survival rate. Whereas with PTPN4, no such significant impact on all of these growth parameters was recorded. Expression of genes in ILP 5th instar of Oedaleus asiaticus by the application of dsPTPN4 and dsPTK5 revealed that PTK, INSR (insulin receptor), IRS (insulin receptor substrate), PI3K (phosphoinositide 3-kinase), PDK (3-phosphoinositide-dependent protein kinase), Akt (protein kinase B) and FOXO (forkhead transcription factor) significantly expressed with downregulation except PTPN4, which remained non-significant. On the other hand, the phosphorylation level of ILP four proteins in O. asiaticus with the treatment of dsPTPN4 and dsPTK5 significantly affected P-IRS and P-FOXO, while P-INSR and P-AKT remained stable at the probability level of 5%. This indicated that the stress response in the O. asiaticus insulin-like signalling pathway (ILP) reduced. Regarding association of protective enzymatic activities, ROS (relative oxygen species), CAT (catalase) and PO (phenol oxidase) increased significantly with exposure to dsPTK5 as compared to dsPTPN4 and control, while exposure of 5th instar of O. asiaticus to dsPTPN4 treatment slightly raised CAT and PO activities with but significant contribution. No such significant effect on MFO and POD was seen using dsPTPN4 and dsPTK5. This showed that in the ILP of O. asiaticus, PTK5 was detrimental to growth, body mass and overall performance, which ultimately benefited insect detoxification with high-energy cost.


Assuntos
Gafanhotos/crescimento & desenvolvimento , Proteína Tirosina Fosfatase não Receptora Tipo 4/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Gafanhotos/genética , Gafanhotos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insulina/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 4/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA