Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1407867, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070907

RESUMO

Young shoots of Aralia elata and young leaves of Eleutherococcus senticosus are two major non-timber forest products in northeastern China. However, human activities and climate change have resulted in serious threats to the habitats of two trees, which greatly limits resource conservation and exploitation of economic forest trees. We used the MaxEnt model to predict the suitable habitats of the two economic trees and analyzed the dominant factors affecting their distribution. The results showed that the suitable habitat areas of A. elata and E. senticosus in the current period were 159950 km2 and 123449 km2, respectively, and the suitable habitats of both economic forest trees were located in the eastern part of the northeast region. Climate factors (Annual precipitation, Precipitation Seasonality) and land use factors are important variables influencing changes in suitable habitat for both trees. With the change of climate and land use in the future, the overall trend of suitable habitat for both economic forest trees shows a northward and then a southward migration. These results may provide assistance in developing strategies for resource conservation and sustainable use of A. elata and E. senticosus, and we suggest that stable and suitable habitats should be selected as areas for in situ conservation and breeding of the two economic forest trees.

2.
Plants (Basel) ; 13(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38498525

RESUMO

Aquatic plants play a crucial role in the sustainable management of eutrophic water bodies, serving as a valuable tool for water purification. However, the effectiveness of using aquatic plants for improving water quality is influenced by landscape considerations. In practical applications, challenges arise concerning low purification efficiency and compromised aesthetic appeal when utilizing plants for water purification. To address these issues, this study aimed to examine the impact of aquatic plants on the purification of simulated landscape water bodies, specifically focusing on the effectiveness of the mosaic system of submerged-emerged plants in remediating eutrophic water bodies. Our findings indicated that individual aquatic plants exhibited limited efficacy in pollutant (total nitrogen, total phosphorus, ammonia nitrogen, and chemical oxygen demand) removal. However, when combined in appropriate proportions, submerged plants could enhance species growth and improve the purification efficiency of polluted water bodies. Notably, the mosaic system of submerged-emerged plants neither significantly promoted nor inhibited the growth of each other, but it effectively removed pollutants from the simulated water bodies and inhibited turbidity increase. The comprehensive evaluation ranked the purification capacity as Canna indica-submerged plants combination (C + S) > Thalia dealbata-submerged plants combination (T + S) > Iris pseudacorus-submerged plants combination (I + S) > Lythrum salicaria-submerged plants combination (L + S). Both C + S and T + S configurations effectively mitigated the rise of water turbidity and offered appealing landscape benefits, making them viable options for practical applications in urban landscape water bodies. Our study highlights that a submerged-emerged mosaic combination is a means of water purification that combines landscape aesthetics and purification efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA