Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
Adv Sci (Weinh) ; : e2307981, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713722

RESUMO

Gut microbiota can influence host gene expression and physiology through metabolites. Besides, the presence or absence of gut microbiome can reprogram host transcriptome and epitranscriptome as represented by N6-methyladenosine (m6A), the most abundant mammalian mRNA modification. However, which and how gut microbiota-derived metabolites reprogram host transcriptome and m6A epitranscriptome remain poorly understood. Here, investigation is conducted into how gut microbiota-derived metabolites impact host transcriptome and m6A epitranscriptome using multiple mouse models and multi-omics approaches. Various antibiotics-induced dysbiotic mice are established, followed by fecal microbiota transplantation (FMT) into germ-free mice, and the results show that bile acid metabolism is significantly altered along with the abundance change in bile acid-producing microbiota. Unbalanced gut microbiota and bile acids drastically change the host transcriptome and the m6A epitranscriptome in multiple tissues. Mechanistically, the expression of m6A writer proteins is regulated in animals treated with antibiotics and in cultured cells treated with bile acids, indicating a direct link between bile acid metabolism and m6A biology. Collectively, these results demonstrate that antibiotic-induced gut dysbiosis regulates the landscape of host transcriptome and m6A epitranscriptome via bile acid metabolism pathway. This work provides novel insights into the interplay between microbial metabolites and host gene expression.

2.
Obstet Gynecol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781591

RESUMO

OBJECTIVE: To estimate the association between mean arterial pressure during pregnancy and neonatal outcomes in participants with chronic hypertension using data from the CHAP (Chronic Hypertension and Pregnancy) trial. METHODS: A secondary analysis of the CHAP trial, an open-label, multicenter randomized trial of antihypertensive treatment in pregnancy, was conducted. The CHAP trial enrolled participants with mild chronic hypertension (blood pressure [BP] 140-159/90-104 mm Hg) and singleton pregnancies less than 23 weeks of gestation, randomizing them to active treatment (maintained on antihypertensive therapy with a goal BP below 140/90 mm Hg) or standard treatment (control; antihypertensives withheld unless BP reached 160 mm Hg systolic BP or higher or 105 mm Hg diastolic BP or higher). We used logistic regression to measure the strength of association between mean arterial pressure (average and highest across study visits) and to select neonatal outcomes. Unadjusted and adjusted odds ratios (per 1-unit increase in millimeters of mercury) of the primary neonatal composite outcome (bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, or intraventricular hemorrhage grade 3 or 4) and individual secondary outcomes (neonatal intensive care unit admission [NICU], low birth weight [LBW] below 2,500 g, and small for gestational age [SGA]) were calculated. RESULTS: A total of 2,284 participants were included: 1,155 active and 1,129 control. Adjusted models controlling for randomization group demonstrated that increasing average mean arterial pressure per millimeter of mercury was associated with an increase in each neonatal outcome examined except NEC, specifically neonatal composite (adjusted odds ratio [aOR] 1.12, 95% CI, 1.09-1.16), NICU admission (aOR 1.07, 95% CI, 1.06-1.08), LBW (aOR 1.12, 95% CI, 1.11-1.14), SGA below the fifth percentile (aOR 1.03, 95% CI, 1.01-1.06), and SGA below the 10th percentile (aOR 1.02, 95% CI, 1.01-1.04). Models using the highest mean arterial pressure as opposed to average mean arterial pressure also demonstrated consistent associations. CONCLUSION: Increasing mean arterial pressure was positively associated with most adverse neonatal outcomes except NEC. Given that the relationship between mean arterial pressure and adverse pregnancy outcomes may not be consistent at all mean arterial pressure levels, future work should attempt to further elucidate whether there is an absolute threshold or relative change in mean arterial pressure at which fetal benefits are optimized along with maternal benefits. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, NCT02299414.

3.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766022

RESUMO

Lachnospiraceae members were highly detected in dysbiotic IL-10 KO mice that displayed similar physiological outcomes as control mice. Lachnospiraceae is a highly diverse family of microbes that have been shown to display both commensal and pathogenic characteristics in the colon environment. We investigated the impact of genetic variation in five Lachnospiraceae strains on lowering cellular inflammation and ROS levels. Cell free spent media (CFSM) from Eubacterium rectale resulted in lowered ROS, and nitric oxide levels in stressed colon cells. We demonstrated through an array of multi-omics and molecular techniques that glutathione (GSH) biosynthesized by E. rectale was able to alleviate host ROS damage. We further showed downregulation of cell stress and immune response genes by host RNA sequencing, which is evidence that E. rectale microbial products promote recovery and alleviate ROS stress.

4.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543036

RESUMO

Emerging evidence has demonstrated a strong correlation between vitamin D status and fatty liver disease. Aberrant hepatic fat infiltration contributes to oxidant overproduction, promoting metabolic dysfunction, and inflammatory responses. Vitamin D supplementation might be a good strategy for reducing hepatic lipid accumulation and inflammation in non-alcoholic fatty liver disease and its associated diseases. This study aimed to investigate the role of the most biologically active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D), in hepatic fat accumulation and inflammation in palmitic acid (PA)-treated AML-12 hepatocytes. The results indicated that treatment with 1,25(OH)2D significantly decreased triglyceride contents, lipid peroxidation, and cellular damage. In addition, mRNA levels of apoptosis-associated speck-like CARD-domain protein (ASC), thioredoxin-interacting protein (TXNIP), NOD-like receptor family pyrin domain-containing 3 (NLRP3), and interleukin-1ß (IL-1ß) involved in the NLRP3 inflammasome accompanied by caspase-1 activity and IL-1ß expression were significantly suppressed by 1,25(OH)2D in PA-treated hepatocytes. Moreover, upon PA exposure, 1,25(OH)2D-incubated AML-12 hepatocytes showed higher sirtulin 1 (SIRT1) expression and adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. A SIRT1 inhibitor alleviated the beneficial effects of 1,25(OH)2D on PA-induced hepatic fat deposition, IL-1ß expression, and caspase-1 activity. These results suggest that the favorable effects of 1,25(OH)2D on hepatic fat accumulation and inflammation may be, at least in part, associated with the SIRT1.


Assuntos
Leucemia Mieloide Aguda , Hepatopatia Gordurosa não Alcoólica , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Vitamina D/farmacologia , Vitamina D/metabolismo , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Vitaminas/metabolismo , Ácido Palmítico/farmacologia , Caspases/metabolismo , Leucemia Mieloide Aguda/metabolismo
5.
Cancer Med ; 13(4): e7009, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38457258

RESUMO

BACKGROUND: Although oncology clinical practice guidelines recognize the need and benefits of exercise, the implementation of these services into cancer care delivery remains limited. We developed and evaluated the impact of a clinically integrated 8-week exercise and education program (CaRE@ELLICSR). METHODS: We conducted a mixed methods, prospective cohort study to examine the effects of the program. Each week, participants attended a 1-h exercise class, followed by a 1.5-h education session. Questionnaires, 6-min walk tests (6MWT), and grip strength were completed at baseline (T0), 8 weeks (T1), and 20 weeks (T2). Semi-structured interviews were conducted with a sub-sample of participants about their experience with the program. RESULTS: Between September 2017 and February 2020, 277 patients enrolled in the program and 210 consented to participate in the research study. The mean age of participants was 55 years. Participants were mostly female (78%), white/Caucasian (55%) and half had breast cancer (50%). Participants experienced statistical and clinically meaninful improvements from T0 to T1 in disability, 6MWT, grip strength, physical activity, and several cancer-related symptoms. These outcomes were maintained 3 months after program completion (T2). Qualitative interviews supported these findings and three themes emerged from the interviews: (1) empowerment and control, (2) supervision and internal program support, and (3) external program support. CONCLUSIONS: This study demonstrates the impact of overcoming common organizational barriers to deliver exercise and rehabilitation as part of routine care. CaRE@ELLICSR demonstrated clinically meaningful improvements in patient-reported and functional outcomes and was considered beneficial and important by participants for their recovery and wellbeing.


Assuntos
Neoplasias da Mama , Qualidade de Vida , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Estudos Prospectivos , Exercício Físico , Oncologia , Terapia por Exercício/métodos
6.
Cell ; 187(5): 1206-1222.e16, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428395

RESUMO

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.


Assuntos
Bactérias , Trato Gastrointestinal , Metagenoma , Plasmídeos , Humanos , Bactérias/genética , Bacteroidetes/genética , Fezes/microbiologia , Plasmídeos/genética
7.
Mol Neurodegener ; 19(1): 18, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38365827

RESUMO

It has recently become well-established that there is a connection between Alzheimer's disease pathology and gut microbiome dysbiosis. We have previously demonstrated that antibiotic-mediated gut microbiota perturbations lead to attenuation of Aß deposition, phosphorylated tau accumulation, and disease-associated glial cell phenotypes in a sex-dependent manner. In this regard, we were intrigued by the finding that a marine-derived oligosaccharide, GV-971, was reported to alter gut microbiota and reduce Aß amyloidosis in the 5XFAD mouse model that were treated at a point when Aß burden was near plateau levels. Utilizing comparable methodologies, but with distinct technical and temporal features, we now report on the impact of GV-971 on gut microbiota, Aß amyloidosis and microglial phenotypes in the APPPS1-21 model, studies performed at the University of Chicago, and independently in the 5X FAD model, studies performed at Washington University, St. Louis.Methods To comprehensively characterize the effects of GV-971 on the microbiota-microglia-amyloid axis, we conducted two separate investigations at independent institutions. There was no coordination of the experimental design or execution between the two laboratories. Indeed, the two laboratories were not aware of each other's experiments until the studies were completed. Male and female APPPS1-21 mice were treated daily with 40, 80, or 160 mg/kg of GV-971 from 8, when Aß burden was detectable upto 12 weeks of age when Aß burden was near maximal levels. In parallel, and to corroborate existing published studies and further investigate sex-related differences, male and female 5XFAD mice were treated daily with 100 mg/kg of GV-971 from 7 to 9 months of age when Aß burden was near peak levels. Subsequently, the two laboratories independently assessed amyloid-ß deposition, metagenomic, and neuroinflammatory profiles. Finally, studies were initiated at the University of Chicago to evaluate the metabolites in cecal tissue from vehicle and GV-971-treated 5XFAD mice.Results These studies showed that independent of the procedural differences (dosage, timing and duration of treatment) between the two laboratories, cerebral amyloidosis was reduced primarily in male mice, independent of strain. We also observed sex-specific microbiota differences following GV-971 treatment. Interestingly, GV-971 significantly altered multiple overlapping bacterial species at both institutions. Moreover, we discovered that GV-971 significantly impacted microbiome metabolism, particularly by elevating amino acid production and influencing the tryptophan pathway. The metagenomics and metabolomics changes correspond with notable reductions in peripheral pro-inflammatory cytokine and chemokine profiles. Furthermore, GV-971 treatment dampened astrocyte and microglia activation, significantly decreasing plaque-associated reactive microglia while concurrently increasing homeostatic microglia only in male mice. Bulk RNAseq analysis unveiled sex-specific changes in cerebral cortex transcriptome profiles, but most importantly, the transcriptome changes in the GV-971-treated male group revealed the involvement of microglia and inflammatory responses.Conclusions In conclusion, these studies demonstrate the connection between the gut microbiome, neuroinflammation, and Alzheimer's disease pathology while highlighting the potential therapeutic effect of GV-971. GV-971 targets the microbiota-microglia-amyloid axis, leading to the lowering of plaque pathology and neuroinflammatory signatures in a sex-dependent manner when given at the onset of Aß deposition or when given after Aß deposition is already at higher levels.


Assuntos
Doença de Alzheimer , Amiloidose , Microbioma Gastrointestinal , Humanos , Camundongos , Masculino , Feminino , Animais , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Camundongos Transgênicos , Amiloidose/metabolismo , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/patologia , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Modelos Animais de Doenças
8.
Artigo em Inglês | MEDLINE | ID: mdl-38372441

RESUMO

BACKGROUND: Patients with sinonasal malignancy (SNM) present with significant sinonasal quality of life (QOL) impairment. Global sinonasal QOL as measured by the 22-item Sinonasal Outcomes Test (SNOT-22) has been shown to improve with treatment. This study aims to characterize SNOT-22 subdomain outcomes in SNM. METHODS: Patients diagnosed with SNM were prospectively enrolled in a multi-center patient registry. SNOT-22 scores were collected at the time of diagnosis and through the post-treatment period for up to 5 years. Multivariable regression analysis was used to identify drivers of variation in SNOT-22 subdomains. RESULTS: Note that 234 patients were reviewed, with a mean follow-up of 22 months (3 months-64 months). Rhinologic, psychological, and sleep subdomains significantly improved versus baseline (all p < 0.05). Subanalysis of 40 patients with follow-up at all timepoints showed statistically significant improvement in rhinologic, extra-nasal, psychological, and sleep subdomains, with minimal clinically important difference met between 2 and 5 years in sleep and psychological subdomains. Adjuvant chemoradiation was associated with worse outcomes in rhinologic (adjusted odds ratio (5.22 [1.69-8.66])), extra-nasal (2.21 [0.22-4.17]) and ear/facial (5.53 [2.10-8.91]) subdomains. Pterygopalatine fossa involvement was associated with worse outcomes in rhinologic (3.22 [0.54-5.93]) and ear/facial (2.97 [0.32-5.65]) subdomains. Positive margins (5.74 [2.17-9.29]) and surgical approach-combined versus endoscopic (3.41 [0.78-6.05])-were associated with worse psychological outcomes. Adjuvant radiation (2.28 [0.18-4.40]) was associated with worse sleep outcomes. CONCLUSIONS: Sinonasal QOL improvements associated with treatment of SNM are driven by rhinologic, extra-nasal, psychological, and sleep subdomains.

9.
mBio ; 15(2): e0278723, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38259081

RESUMO

Tetracyclines serve as broad-spectrum antibiotics to treat bacterial infections. The discovery of new tetracycline resistance genes has led to new questions about the underlying mechanisms of resistance, gene transfer, and their relevance to human health. We tracked changes in the abundance of a 55-kbp conjugative transposon (CTn214) carrying tetQ, a tetracycline resistance gene, within a Bacteroides fragilis metagenome-assembled genome derived from shotgun sequencing of microbial DNA extracted from the ileal pouch of a patient with ulcerative colitis. The mapping of metagenomic reads to CTn214 revealed the multi-copy nature of a 17,044-nt region containing tetQ in samples collected during inflammation and uninflamed visits. B. fragilis cultivars isolated from the same patient during periods of inflammation harbored CTn214 integrated into the chromosome or both a circular, multi-copy, extrachromosomal region of the CTn214 containing tetQ and the corresponding integrated form. The tetracycline-dependent mechanism for the transmission of CTn214 is nearly identical to a common conjugative transposon found in the genome of B. fragilis (CTnDOT), but the autonomously amplified nature of a circular 17,044-nt region of CTn214 that codes for tetQ and the integration of the same sequence in the linear chromosome within the same cell is a novel observation. Genome and transcriptome sequencing of B. fragilis cultivars grown under different concentrations of tetracycline and ciprofloxacin indicates that tetQ in strains containing the circular form remains actively expressed regardless of treatment, while the expression of tetQ in strains containing the linear form increases only in the presence of tetracycline.IMPORTANCEThe exchange of antibiotic production and resistance genes between microorganisms can lead to the emergence of new pathogens. In this study, short-read mapping of metagenomic samples taken over time from the illeal pouch of a patient with ulcerative colitis to a Bacteroides fragilis metagenome-assembled genome revealed two distinct genomic arrangements of a novel conjugative transposon, CTn214, that encodes tetracycline resistance. The autonomous amplification of a plasmid-like circular form from CTn214 that includes tetQ potentially provides consistent ribosome protection against tetracycline. This mode of antibiotic resistance offers a novel mechanism for understanding the emergence of pathobionts like B. fragilis and their persistence for extended periods of time in patients with inflammatory bowel disease.


Assuntos
Colite Ulcerativa , Tetraciclina , Humanos , Tetraciclina/farmacologia , Bacteroides/genética , Colite Ulcerativa/genética , Elementos de DNA Transponíveis , Conjugação Genética , Plasmídeos/genética , Antibacterianos/farmacologia , Bacteroides fragilis/genética , Inflamação/genética
10.
J Bacteriol ; 206(1): e0042623, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38174933

RESUMO

Bile acids (BAs) are cholesterol-derived molecules that aid in digestion and nutrient absorption, regulate host metabolic processes, and influence physiology of the gut microbiota. Both the host and its microbiome contribute to enzymatic modifications that shape the chemical diversity of BAs in the gut. Several bacterial species have been reported to conjugate standard amino acids to BAs, but it was not known if bacteria conjugate BAs to other amine classes. Here, we show that Bacteroides fragilis strain P207, isolated from a bacterial bloom in the J-pouch of a patient with ulcerative colitis pouchitis, conjugates standard amino acids and the neuroactive amines γ-aminobutyric acid (GABA) and tyramine to deoxycholic acid. We extended this analysis to other human gut isolates and identified species that are competent to conjugate GABA and tyramine to primary and secondary BAs, and further identified diverse BA-GABA and BA-tyramine amides in human stool. A longitudinal metabolomic analysis of J-pouch contents of the patient from whom B. fragilis P207 was isolated revealed highly reduced levels of secondary bile acids and a shifting BA amide profile before, during, and after onset of pouchitis, including temporal changes in several BA-GABA amides. Treatment of pouchitis with ciprofloxacin was associated with a marked reduction of nearly all BA amides in the J-pouch. Our study expands the known repertoire of conjugated bile acids produced by bacteria to include BA conjugates to GABA and tyramine and demonstrates that these molecules are present in the human gut. IMPORTANCE BAs are modified in multiple ways by host enzymes and the microbiota to produce a chemically diverse set of molecules that assist in the digestive process and impact many physiological functions. This study reports the discovery of bacterial species that conjugate the neuroactive amines, GABA and tyramine, to primary and secondary BAs. We further present evidence that BA-GABA and BA-tyramine conjugates are present in the human gut, and document a shifting BA-GABA profile in a human pouchitis patient before, during, and after inflammation and antibiotic treatment. GABA and tyramine are common metabolic products of the gut microbiota and potent neuroactive molecules. GABA- and tyramine-conjugated BAs may influence receptor-mediated regulatory mechanisms of humans and their gut microbes, and absorption of these molecules and their entry into enterohepatic circulation may impact host physiology at distal tissue sites. This study defines new conjugated bile acids in the human gut.


Assuntos
Ácidos e Sais Biliares , Pouchite , Humanos , Aminoácidos , Ácido gama-Aminobutírico , Aminas , Catálise , Amidas
11.
Simul Healthc ; 19(1S): S98-S111, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240622

RESUMO

INTRODUCTION: The use of extended reality (XR) technologies, including virtual, augmented, and mixed reality, has increased within surgical and procedural training programs. Few studies have assessed experiential learning- and patient-based outcomes using XR compared with standard training methods. METHODS: As a working group for the Society for Simulation in Healthcare, we used Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and a PICO strategy to perform a systematic review of 4238 articles to assess the effectiveness of XR technologies compared with standard training methods. Outcomes were grouped into knowledge, time-to-completion, technical proficiency, reactions, and patient outcomes. Because of study heterogeneity, a meta-analysis was not feasible. RESULTS: Thirty-two studies met eligibility criteria: 18 randomized controlled trials, 7 comparative studies, and 7 systematic reviews. Outcomes of most studies included Kirkpatrick levels of evidence I-III (reactions, knowledge, and behavior), while few reported level IV outcomes (patient). The overall risk of bias was low. With few exceptions, included studies showed XR technology to be more effective than standard training methods in improving objective skills and performance, shortening procedure time, and receiving more positive learner ratings. However, XR use did not show significant differences in gained knowledge. CONCLUSIONS: Surgical or procedural XR training may improve technical skill development among trainees and is generally favored over standard training methods. However, there should be an additional focus on how skill development translates to clinically relevant outcomes. We recommend longitudinal studies to examine retention and transfer of training to clinical settings, methods to improve timely, adaptive feedback for deliberate practice, and cost analyses.


Assuntos
Realidade Aumentada , Treinamento por Simulação , Humanos , Simulação por Computador , Aprendizagem Baseada em Problemas , Competência Clínica , Modalidades de Fisioterapia
12.
Int Forum Allergy Rhinol ; 14(4): 775-785, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37646428

RESUMO

BACKGROUND: The impact of sinonasal malignancies (SNMs) on quality of life (QOL) at presentation is poorly understood. The Sinonasal Outcome Test (SNOT-22) and University of Washington Quality of Life (UWQOL) are validated QOL instruments with distinctive subdomains. This study aims to identify factors impacting pretreatment QOL in SNM patients to personalize multidisciplinary management and counseling. METHODS: Patients with previously untreated SNMs were prospectively enrolled (2015-2022) in a multicenter observational study. Baseline pretreatment QOL instruments (SNOT-22, UWQOL) were obtained along with demographics, comorbidities, histopathology/staging, tumor involvement, and symptoms. Multivariable regression models identified factors associated with reduced baseline QOL. RESULTS: Among 204 patients, presenting baseline QOL was significantly reduced. Multivariable regression showed worse total SNOT-22 QOL in patients with skull base erosion (p = 0.02). SNOT-rhinologic QOL was worse in women (p = 0.009), patients with epistaxis (p = 0.036), and industrial exposure (p = 0.005). SNOT extranasal QOL was worse in patients with industrial exposure (p = 0.016); worse SNOT ear/facial QOL if perineural invasion (PNI) (p = 0.027). Squamous cell carcinoma pathology (p = 0.037), palate involvement (p = 0.012), and pain (p = 0.017) were associated with worse SNOT sleep QOL scores. SNOT psychological subdomain scores were significantly worse in patients with palate lesions (p = 0.022), skull base erosion (p = 0.025), and T1 staging (p = 0.023). Low QOL was more likely in the presence of PNI on UW health (p = 0.019) and orbital erosion on UW overall (p = 0.03). UW social QOL was worse if palatal involvement (p = 0.023) or PNI (p = 0.005). CONCLUSIONS: Our findings demonstrate a negative impact on baseline QOL in patients with SNMs and suggest sex-specific and symptom-related lower QOL scores, with minimal histopathology association. Anatomical tumor involvement may be more reflective of QOL than T-staging, as orbital and skull base erosion, PNI, and palate lesions are significantly associated with reduced baseline QOL.


Assuntos
Rinite , Neoplasias da Base do Crânio , Masculino , Humanos , Feminino , Resultado do Tratamento , Qualidade de Vida , Endoscopia , Base do Crânio , Doença Crônica
13.
mBio ; 15(1): e0283023, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38063424

RESUMO

IMPORTANCE: The Gram-negative bacterium Bacteroides fragilis is a common member of the human gut microbiota that colonizes multiple host niches and can influence human physiology through a variety of mechanisms. Identification of genes that enable B. fragilis to grow across a range of host environments has been impeded in part by the relatively limited genetic tractability of this species. We have developed a high-throughput genetic resource for a B. fragilis strain isolated from a UC pouchitis patient. Bile acids limit microbial growth and are altered in abundance in UC pouches, where B. fragilis often blooms. Using this resource, we uncovered pathways and processes that impact B. fragilis fitness in bile and that may contribute to population expansions during bouts of gut inflammation.


Assuntos
Bacteroides fragilis , Pouchite , Humanos , Bacteroides fragilis/metabolismo , Ácidos e Sais Biliares/metabolismo , Inflamação , Bile
14.
Int J Radiat Oncol Biol Phys ; 118(3): 759-769, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820770

RESUMO

PURPOSE: Survivors of head and neck cancer may have significant lasting impairments and poor access to rehabilitation. To address this, our group developed and evaluated a rehabilitation planning consult (RPC). The RPC is conducted through an initial consultation and a single follow-up session with a rehabilitation professional. During the initial consultation, rehabilitation needs are determined and the survivor sets individualized goals and plans. They then implement their plans independently and are facilitated to evaluate and modify plans as necessary during the follow-up session. METHODS AND MATERIALS: We used a waitlist control design to compare the proportion of participants attaining a minimally importantly different change in quality of life (QOL) on the Short Form 36 Physical Health Summary Score from baseline to 3 months after study enrollment, between patients randomized to receive (n = 77) or wait 14 ± 3 weeks to receive (n = 76) the RPC. Additional outcomes included goal attainment indicators measured using the Brief Rehabilitation Assessment for Survivors of Head and Neck Cancer (BRASH). RESULTS: Of 153 participants recruited, 95 (62%) completed the intervention; 57 were in the immediate (RPC) group and 38 were in the waiting list control (WLC) group. No significant between-group differences were seen in the proportion of patients achieving a minimally important improvement (2.5 units) on the Physical Health Summary Score from baseline to 3 months after recruitment. No between-group differences were seen on any secondary QOL indicators. Among the 67 (RPC n = 42, WLC n = 22) participants who set individualized rehabilitation goals, BRASH scores on goal performance and satisfaction with goal performance were significantly better in the RPC group. CONCLUSIONS: Our results suggest that the RPC may provide benefit in patients' individualized domains of choice among those who set goals, without affecting overall QOL. Future work could refine the subset of patients who benefit and explore the optimal timing and intensity of the intervention.


Assuntos
Neoplasias de Cabeça e Pescoço , Qualidade de Vida , Humanos , Sobreviventes , Encaminhamento e Consulta
16.
Invest Ophthalmol Vis Sci ; 64(15): 21, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108689

RESUMO

Purpose: Emerging data indicate that metformin may prevent the development of age-related macular degeneration (AMD). Whereas the underlying mechanisms of metformin's anti-aging properties remain undetermined, one proposed avenue is the gut microbiome. Using the laser-induced choroidal neovascularization (CNV) model, we investigate the effects of oral metformin on CNV, retinal pigment epithelium (RPE)/choroid transcriptome, and gut microbiota. Methods: Specific pathogen free (SPF) male mice were treated via daily oral gavage of metformin 300 mg/kg or vehicle. Male mice were selected to minimize sex-specific differences to laser induction and response to metformin. Laser-induced CNV size and macrophage/microglial infiltration were assessed by isolectin and Iba1 immunostaining. High-throughput RNA-seq of the RPE/choroid was performed using Illumina. Fecal pellets were analyzed for gut microbiota composition/pathways with 16S rRNA sequencing/shotgun metagenomics, as well as microbial-derived metabolites, including small-chain fatty acids and bile acids. Investigation was repeated in metformin-treated germ-free (GF) mice and antibiotic-treated/GF mice receiving fecal microbiota transplantation (FMT) from metformin-treated SPF mice. Results: Metformin treatment reduced CNV size (P < 0.01) and decreased Iba1+ macrophage/microglial infiltration (P < 0.005). One hundred forty-five differentially expressed genes were identified in the metformin-treated group (P < 0.05) with a downregulation in pro-angiogenic genes Tie1, Pgf, and Gata2. Furthermore, metformin altered the gut microbiome in favor of Bifidobacterium and Akkermansia, with a significant increase in fecal levels of butyrate, succinate, and cholic acid. Metformin did not suppress CNV in GF mice but colonization of microbiome-depleted mice with metformin-derived FMT suppressed CNV. Conclusions: These data suggest that oral metformin suppresses CNV, the hallmark lesion of advanced neovascular AMD, via gut microbiome modulation.


Assuntos
Neovascularização de Coroide , Degeneração Macular Exsudativa , Masculino , Feminino , Animais , Camundongos , Inibidores da Angiogênese , RNA Ribossômico 16S , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Retina , Neovascularização de Coroide/prevenção & controle
17.
Curr Oncol Rep ; 25(12): 1445-1453, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37955831

RESUMO

PURPOSE OF REVIEW: This narrative review aims to offer a thorough summary of functional impairments commonly encountered by breast cancer survivors following mastectomy. Its objective is to discuss the factors influencing these impairments and explore diverse strategies for managing them. RECENT FINDINGS: Postmastectomy functional impairments can be grouped into three categories: neuromuscular, musculoskeletal, and lymphovascular. Neuromuscular issues include postmastectomy pain syndrome (PMPS) and phantom breast syndrome (PBS). Musculoskeletal problems encompass myofascial pain syndrome and adhesive capsulitis. Lymphovascular dysfunctions include lymphedema and axillary web syndrome (AWS). Factors such as age, surgical techniques, and adjuvant therapies influence the development of these functional impairments. Managing functional impairments requires a comprehensive approach involving physical therapy, pharmacologic therapy, exercise, and surgical treatment when indicated. It is important to identify the risk factors associated with these conditions to tailor interventions accordingly. The impact of breast reconstruction on these impairments remains uncertain, with mixed results reported in the literature.


Assuntos
Neoplasias da Mama , Linfedema , Mamoplastia , Humanos , Feminino , Mastectomia/efeitos adversos , Neoplasias da Mama/cirurgia , Neoplasias da Mama/etiologia , Linfedema/terapia , Linfedema/cirurgia , Sobreviventes
18.
medRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014192

RESUMO

Background & Aims: Total proctocolectomy with ileal pouch anal anastomosis (IPAA) is the standard of care for patients with severe treatment resistant ulcerative colitis (UC). Despite improvements in patient outcomes, about 50% of patients will develop inflammation of the pouch within 1-2 years following surgery. Establishment of UC pouches is associated with profound histological changes of the mucosa. A detailed characterization of these changes on a cellular and molecular level is crucial for an improved understanding of pouch physiology and diseases management. Methods: We generated cell-type-resolved transcriptional and epigenetic atlases of UC pouches using scRNA-seq and scATAC-seq data from paired biopsy samples from the ileal pouch and ileal segment above the pouch (pre-pouch) of UC-IPAA patients (n=6, female=2) without symptoms. We also collected data from paired biopsies of the terminal ileum (TI) and ascending colon (AC) from healthy controls (n=6, female=3). Results: We identified novel populations of colon-like absorptive and secretory epithelial cells, constituting a significant proportion of the epithelial cell fraction in the pouch but not in matched pre-pouch samples. Pouch-specific enterocytes expressed colon-specific genes, including CEACAM5, CA2. However, in contrast to normal colonic epithelium, these cells also expressed a range of inflammatory and secretory genes, similar to previously detected gene expression signatures in IBD patients. Comparison to longitudinal bulk RNA-seq data from UC pouches demonstrated that colon-like epithelial cells are present early after pouch functionalization and independently of subsequent pouchitis. Finally, single cell chromatin accessibility revealed activation colonic transcriptional regulators, including CDX1, NFIA, and EHF. Conclusion: UC pouches are characterized by partial colonic metaplasia of the epithelium. These data constitute a resource of transcriptomic and epigenetic signatures of cell populations in the pouch and provide an anchor for understanding the underlying molecular mechanisms of pouchitis.

19.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014241

RESUMO

Gastrointestinal microbes modulate peristalsis and stimulate the enteric nervous system (ENS), whose development, as in the central nervous system (CNS), continues into the murine postweaning period. Given that adult CNS function depends on stimuli received during critical periods of postnatal development, we hypothesized that adult ENS function, namely motility, depends on microbial stimuli during similar critical periods. We gave fecal microbiota transplantation (FMT) to germ-free mice at weaning or as adults and found that only the mice given FMT at weaning recovered normal transit, while those given FMT as adults showed limited improvements. RNAseq of colonic muscularis propria revealed enrichments in neuron developmental pathways in mice exposed to gut microbes earlier in life, while mice exposed later - or not at all - showed exaggerated expression of inflammatory pathways. These findings highlight a microbiota-dependent sensitive period in ENS development, pointing to potential roles of the early life microbiome in later life dysmotility.

20.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37986759

RESUMO

In complex mammals, the importance and host-specificity of microbial communities have been demonstrated through their positive effects on host immune fitness or performance. However, whether host metabolic physiology homeostasis depends on a specific bacterial community exclusive to the host remains unclear. Here, we show that the coevolved host-specific microbiota is required to maintain diet-specific flexible and sufficient metabolic homeostasis through a high colonization rate, modulating gut metabolites, and related targets. Using germ-free (GF) mice, we tested whether the fitness benefiting the host metabolic phenotype of microbiota was host-specific. We demonstrated that GF mice associated with exogenous microbiota (human microbiota (HM)), which exhibited different and reduced gut microbial species diversity, significantly elevated metabolic rate, and exhibited metabolic insufficiency, all characteristics of GF mice. Strikingly, the absence of the host-specific microbiome attenuated high-fat diet-specific metabolism features. Different diets caused different metabolic changes in only host-specific microbiota-associated mice, not the host-microbiota mismatched mice. While RNA sequencing revealed subtle changes in the expression of genes in the liver, GF mice and HM mice showed considerably altered expression of genes associated with metabolic physiology compared to GF mice associated with host-specific microbiota. The effect of diet outweighed microbiota in the liver transcriptome. These changes occurred in the setting of decreased luminal short-chain fatty acids (SCFAs) and the secondary bile acid (BAs) pool and downstream gut signaling targets in HM and GF mice, which affects whole-body metabolism. These data indicate that a foreign microbial community provides little metabolic benefit to the host when compared to a host-specific microbiome, due to the colonization selection pressure and microbiota-derived metabolites dysfunction. Overall, microbiome fitness effects on the host metabolic phenotype were host-specific. Understanding the impact of the host-specificity of the microbiome on metabolic homeostasis may provide important insights for building a better probiotic. Highlights: Microbiome fitness effects on the host metabolic phenotype were host-specific in mammals.Human microbiota-associated mice exhibited lower host metabolic fitness or performance, and similar functional costs in GF mice.Different diets cause different metabolic changes only in host-specific microbiota-associated mice, not the host-microbiota mismatched mice.The defective gut microbiota in host-specific microbiota, microbial metabolites and related targets likely drive the metabolic homeostasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA