Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39064685

RESUMO

The organic anion transporters OAT1 (SLC22A6) and OAT3 (SLC22A8) are drug transporters that are expressed in the kidney, with well-established roles in the in vivo transport of drugs and endogenous metabolites. A comparatively unexplored potential function of these drug transporters is their contribution to the in vivo regulation of natural products (NPs) and their effects on endogenous metabolism. This is important for the evaluation of potential NP interactions with other compounds at the transporter site. Here, we have analyzed the NPs present in several well-established databases from Asian (Chinese, Indian Ayurvedic) and other traditions. Loss of OAT1 and OAT3 in murine knockouts caused serum alterations of many NPs, including flavonoids, vitamins, and indoles. OAT1- and OAT3-dependent NPs were largely separable based on a multivariate analysis of chemical properties. Direct binding to the transporter was confirmed using in vitro transport assays and protein binding assays. Our in vivo and in vitro results, considered in the context of previous data, demonstrate that OAT1 and OAT3 play a pivotal role in the handling of non-synthetic small molecule natural products, NP-derived antioxidants, phytochemicals, and nutrients (e.g., pantothenic acid, thiamine). As described by remote sensing and signaling theory, drug transporters help regulate redox states by meditating the movement of endogenous antioxidants and nutrients between organs and organisms. Our results demonstrate how dietary antioxidants and other NPs might feed into these inter-organ and inter-organismal pathways.


Assuntos
Antioxidantes , Produtos Biológicos , Proteína 1 Transportadora de Ânions Orgânicos , Transportadores de Ânions Orgânicos Sódio-Independentes , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/genética , Animais , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Camundongos , Nutrientes/metabolismo , Camundongos Knockout , Humanos , Transporte Biológico , Rim/metabolismo , Flavonoides/farmacocinética , Flavonoides/metabolismo
2.
JCI Insight ; 8(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692015

RESUMO

Organic anion transporter 1 (OAT1/SLC22A6, NKT) is a multispecific drug transporter in the kidney with numerous substrates, including pharmaceuticals, endogenous metabolites, natural products, and uremic toxins. Here, we show that OAT1 regulates levels of gut microbiome-derived metabolites. We depleted the gut microbiome of Oat1-KO and WT mice and performed metabolomics to analyze the effects of genotype (KO versus WT) and microbiome depletion. OAT1 is an in vivo intermediary between the host and the microbes, with 40 of the 162 metabolites dependent on the gut microbiome also impacted by loss of Oat1. Chemoinformatic analysis revealed that the altered metabolites (e.g., indoxyl sulfate, p-cresol sulfate, deoxycholate) had more ring structures and sulfate groups. This indicates a pathway from gut microbes to liver phase II metabolism, to renal OAT1-mediated transport. The idea that multiple gut-derived metabolites directly interact with OAT1 was confirmed by in vitro transport and magnetic bead binding assays. We show that gut microbiome-derived metabolites dependent on OAT1 are impacted in a chronic kidney disease (CKD) model and human drug-metabolite interactions. Consistent with the Remote Sensing and Signaling Theory, our results support the view that drug transporters (e.g., OAT1, OAT3, OATP1B1, OATP1B3, MRP2, MRP4, ABCG2) play a central role in regulating gut microbe-dependent metabolism, as well as interorganismal communication between the host and microbiome.


Assuntos
Microbioma Gastrointestinal , Animais , Humanos , Camundongos , Transporte Biológico/genética , Rim/metabolismo , Proteínas de Membrana Transportadoras , Metabolômica
3.
Proteins ; 89(12): 1633-1646, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34449113

RESUMO

Critical assessment of structure prediction (CASP) conducts community experiments to determine the state of the art in computing protein structure from amino acid sequence. The process relies on the experimental community providing information about not yet public or about to be solved structures, for use as targets. For some targets, the experimental structure is not solved in time for use in CASP. Calculated structure accuracy improved dramatically in this round, implying that models should now be much more useful for resolving many sorts of experimental difficulties. To test this, selected models for seven unsolved targets were provided to the experimental groups. These models were from the AlphaFold2 group, who overall submitted the most accurate predictions in CASP14. Four targets were solved with the aid of the models, and, additionally, the structure of an already solved target was improved. An a posteriori analysis showed that, in some cases, models from other groups would also be effective. This paper provides accounts of the successful application of models to structure determination, including molecular replacement for X-ray crystallography, backbone tracing and sequence positioning in a cryo-electron microscopy structure, and correction of local features. The results suggest that, in future, there will be greatly increased synergy between computational and experimental approaches to structure determination.


Assuntos
Biologia Computacional/métodos , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Proteínas/química , Conformação Proteica , Software
4.
Artigo em Inglês | MEDLINE | ID: mdl-34116183

RESUMO

Marine pollutants bioaccumulate at high trophic levels of marine food webs and are transferred to humans through consumption of apex species. Yellowfin tuna (Thunnus albacares) are marine predators, and one of largest commercial fisheries in the world. Previous studies have shown that yellowfin tuna can accumulate high levels of persistent organic pollutants, including Transporter Interfering Chemicals (TICs), which are chemicals shown to bind to mammalian xenobiotic transporters and interfere with their function. Here, we examined the extent to which these same compounds might interfere with the activity of the yellowfin tuna (Thunnus albacares) ortholog of this transporter. To accomplish this goal we identified, expressed, and functionally assayed tuna ABCB1. The results demonstrated a common mode of vertebrate ABCB1 interaction with TICs that predicts effects across these species, based on high conservation of specific interacting residues. Importantly several TICs showed potent inhibition of Ta-ABCB1, such as the organochlorine pesticides Endrin (EC50 = 1.2 ± 0.2 µM) and Mirex (EC50 = 2.3 ± 0.9 µM). However, unlike the effects observed on mouse ABCB1, low concentrations of the organochlorine pesticide TICs p,p'-DDT and its metabolite p,p'-DDD co-stimulated verapamil-induced Ta-ABCB1 ATPase activity possibly suggesting a low transport activity for these ligands in tuna. These results provide a mechanistic basis for understanding the potential vulnerability of tuna to these ubquitous pollutants.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Atum/metabolismo , Poluentes Químicos da Água/toxicidade , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/metabolismo , Animais , Clonagem Molecular , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Filogenia
5.
FEBS Lett ; 594(23): 3767-3775, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32978974

RESUMO

Members of the ATP-binding cassette (ABC) transporter superfamily translocate a broad spectrum of chemically diverse substrates. While their eponymous ATP-binding cassette in the nucleotide-binding domains (NBDs) is highly conserved, their transmembrane domains (TMDs) forming the translocation pathway exhibit distinct folds and topologies, suggesting that during evolution the ancient motor domains were combined with different transmembrane mechanical systems to orchestrate a variety of cellular processes. In recent years, it has become increasingly evident that the distinct TMD folds are best suited to categorize the multitude of ABC transporters. We therefore propose a new ABC transporter classification that is based on structural homology in the TMDs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/classificação , Domínios Proteicos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Dobramento de Proteína
6.
Langmuir ; 36(23): 6569-6579, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32432881

RESUMO

γ-Secretase is a multisubunit complex that catalyzes intramembranous cleavage of transmembrane proteins. The lipid environment forms membrane microdomains that serve as spatio-temporal platforms for proteins to function properly. Despite substantial advances in the regulation of γ-secretase, the effect of the local membrane lipid microenvironment on the regulation of γ-secretase is poorly understood. Here, we characterized and quantified the partitioning of γ-secretase and its substrates, the amyloid precursor protein (APP) and Notch, into lipid bilayers using solid-supported model membranes. Notch substrate is preferentially localized in the liquid-disordered (Ld) lipid domains, whereas APP and γ-secretase partition as single or higher complex in both phases but highly favor the ordered phase, especially after recruiting lipids from the ordered phase, indicating that the activity and specificity of γ-secretase against these two substrates are modulated by membrane lateral organization. Moreover, time-elapse measurements reveal that γ-secretase can recruit specific membrane components from the cholesterol-rich Lo phase and thus creates a favorable lipid environment for substrate recognition and therefore activity. This work offers insight into how γ-secretase and lipid modulate each other and control its activity and specificity.


Assuntos
Secretases da Proteína Precursora do Amiloide , Bicamadas Lipídicas , Precursor de Proteína beta-Amiloide , Lipídeos de Membrana , Microdomínios da Membrana
7.
Proc Natl Acad Sci U S A ; 117(9): 5059-5066, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32041869

RESUMO

The radiation of angiosperms led to the emergence of the vast majority of today's plant species and all our major food crops. Their extraordinary diversification occurred in conjunction with the evolution of a more efficient vascular system for the transport of water, composed of vessel elements. The physical dimensions of these water-conducting specialized cells have played a critical role in angiosperm evolution; they determine resistance to water flow, influence photosynthesis rate, and contribute to plant stature. However, the genetic factors that determine their dimensions are unclear. Here we show that a previously uncharacterized gene, ENLARGED VESSEL ELEMENT (EVE), contributes to the dimensions of vessel elements in Populus, impacting hydraulic conductivity. Our data suggest that EVE is localized in the plasma membrane and is involved in potassium uptake of differentiating xylem cells during vessel development. In plants, EVE first emerged in streptophyte algae, but expanded dramatically among vessel-containing angiosperms. The phylogeny, structure and composition of EVE indicates that it may have been involved in an ancient horizontal gene-transfer event.


Assuntos
Magnoliopsida/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Evolução Biológica , Membrana Celular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Fotossíntese , Phycodnaviridae , Plantas Geneticamente Modificadas , Potássio/metabolismo , Água/metabolismo , Xilema/citologia , Xilema/metabolismo
8.
Sci Rep ; 9(1): 15092, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641149

RESUMO

We used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to obtain a comprehensive view of transporter dynamics (85.8% sequence coverage) occurring throughout the multidrug efflux transporter P-glycoprotein (P-gp) in three distinct conformational states: predominantly inward-facing apo P-gp, pre-hydrolytic (E552Q/E1197Q) P-gp bound to Mg+2-ATP, and outward-facing P-gp bound to Mg+2-ADP-VO4-3. Nucleotide affinity was measured with bio-layer interferometry (BLI), which yielded kinetics data that fit a two Mg+2-ATP binding-site model. This model has one high affinity site (3.2 ± 0.3 µM) and one low affinity site (209 ± 25 µM). Comparison of deuterium incorporation profiles revealed asymmetry between the changes undergone at the critical interfaces where nucleotide binding domains (NBDs) contact intracellular helices (ICHs). In the pre-hydrolytic state, both interfaces between ICHs and NBDs decreased exchange to similar extents relative to inward-facing P-gp. In the outward-facing state, the ICH-NBD1 interface showed decreased exchange, while the ICH-NBD2 interface showed less of an effect. The extracellular loops (ECLs) showed reduced deuterium uptake in the pre-hydrolytic state, consistent with an occluded conformation. While in the outward-facing state, increased ECL exchange corresponding to EC domain opening was observed. These findings point toward asymmetry between both NBDs, and they suggest that pre-hydrolytic P-gp occupies an occluded conformation.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Simulação de Dinâmica Molecular , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Magnésio/metabolismo , Camundongos , Mutação de Sentido Incorreto , Ligação Proteica
9.
Nat Microbiol ; 4(12): 2082-2089, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548686

RESUMO

Dietary habits have been associated with alterations of the human gut resident microorganisms contributing to obesity, diabetes and cancer1. In Western diets, red meat is a frequently eaten food2, but long-term consumption has been associated with increased risk of disease3,4. Red meat is enriched in N-glycolylneuraminic acid (Neu5Gc) that cannot be synthesized by humans5. However, consumption can cause Neu5Gc incorporation into cell surface glycans6, especially in carcinomas4,7. As a consequence, an inflammatory response is triggered when Neu5Gc-containing glycans encounter circulating anti-Neu5Gc antibodies8,9. Although bacteria can use free sialic acids as a nutrient source10-12, it is currently unknown if gut microorganisms contribute to releasing Neu5Gc from food. We found that a Neu5Gc-rich diet induces changes in the gut microbiota, with Bacteroidales and Clostridiales responding the most. Genome assembling of mouse and human shotgun metagenomic sequencing identified bacterial sialidases with previously unobserved substrate preference for Neu5Gc-containing glycans. X-ray crystallography revealed key amino acids potentially contributing to substrate preference. Additionally, we verified that mouse and human sialidases were able to release Neu5Gc from red meat. The release of Neu5Gc from red meat using bacterial sialidases could reduce the risk of inflammatory diseases associated with red meat consumption, including colorectal cancer4 and atherosclerosis13.


Assuntos
Bactérias/enzimologia , Dieta , Microbioma Gastrointestinal , Ácidos Neuramínicos/metabolismo , Neuraminidase/genética , Polissacarídeos/metabolismo , Carne Vermelha/análise , Animais , Bactérias/classificação , Bacteroides/enzimologia , Bacteroides/genética , Clostridiales/enzimologia , Clostridiales/genética , Cristalografia por Raios X , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Masculino , Metagenômica , Camundongos , Camundongos Endogâmicos C57BL , Neuraminidase/metabolismo , Polissacarídeos/química
10.
Proc Natl Acad Sci U S A ; 116(33): 16394-16403, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31363053

RESUMO

Heterotrimeric G proteins are key molecular switches that control cell behavior. The canonical activation of G proteins by agonist-occupied G protein-coupled receptors (GPCRs) has recently been elucidated from the structural perspective. In contrast, the structural basis for GPCR-independent G protein activation by a novel family of guanine-nucleotide exchange modulators (GEMs) remains unknown. Here, we present a 2.0-Å crystal structure of Gαi in complex with the GEM motif of GIV/Girdin. Nucleotide exchange assays, molecular dynamics simulations, and hydrogen-deuterium exchange experiments demonstrate that GEM binding to the conformational switch II causes structural changes that allosterically propagate to the hydrophobic core of the Gαi GTPase domain. Rearrangement of the hydrophobic core appears to be a common mechanism by which GPCRs and GEMs activate G proteins, although with different efficiency. Atomic-level insights presented here will aid structure-based efforts to selectively target the noncanonical G protein activation.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas dos Microfilamentos/química , Receptores Acoplados a Proteínas G/química , Proteínas de Transporte Vesicular/química , Regulação Alostérica/genética , Cristalografia por Raios X , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Células HeLa , Proteínas Heterotriméricas de Ligação ao GTP/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas dos Microfilamentos/genética , Simulação de Dinâmica Molecular , Ligação Proteica/genética , Conformação Proteica , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Proteínas de Transporte Vesicular/genética
11.
Proc Natl Acad Sci U S A ; 116(28): 14309-14318, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227607

RESUMO

Sensing and responding to environmental water deficiency and osmotic stresses are essential for the growth, development, and survival of plants. Recently, an osmolality-sensing ion channel called OSCA1 was discovered that functions in sensing hyperosmolality in Arabidopsis Here, we report the cryo-electron microscopy (cryo-EM) structure and function of an OSCA1 homolog from rice (Oryza sativa; OsOSCA1.2), leading to a model of how it could mediate hyperosmolality sensing and transport pathway gating. The structure reveals a dimer; the molecular architecture of each subunit consists of 11 transmembrane (TM) helices and a cytosolic soluble domain that has homology to RNA recognition proteins. The TM domain is structurally related to the TMEM16 family of calcium-dependent ion channels and lipid scramblases. The cytosolic soluble domain possesses a distinct structural feature in the form of extended intracellular helical arms that are parallel to the plasma membrane. These helical arms are well positioned to potentially sense lateral tension on the inner leaflet of the lipid bilayer caused by changes in turgor pressure. Computational dynamic analysis suggests how this domain couples to the TM portion of the molecule to open a transport pathway. Hydrogen/deuterium exchange mass spectrometry (HDXMS) experimentally confirms the conformational dynamics of these coupled domains. These studies provide a framework to understand the structural basis of proposed hyperosmolality sensing in a staple crop plant, extend our knowledge of the anoctamin superfamily important for plants and fungi, and provide a structural mechanism for potentially translating membrane stress to transport regulation.


Assuntos
Anoctaminas/ultraestrutura , Proteínas de Arabidopsis/ultraestrutura , Canais de Cálcio/ultraestrutura , Oryza/ultraestrutura , Conformação Proteica , Sequência de Aminoácidos/genética , Anoctaminas/química , Anoctaminas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Microscopia Crioeletrônica , Citoplasma/genética , Espectrometria de Massas , Potenciais da Membrana/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Pressão Osmótica/fisiologia , Água/química
12.
Methods Cell Biol ; 151: 353-376, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30948018

RESUMO

Single-domain antibodies, also known as nanobodies, are small antigen-binding fragments (~15kDa) that are derived from heavy chain only antibodies present in camelids (VHH, from camels and llamas), and cartilaginous fishes (VNAR, from sharks). Nanobody V-like domains are useful alternatives to conventional antibodies due to their small size, and high solubility and stability across many applications. In addition, phage display, ribosome display, and mRNA/cDNA display methods can be used for the efficient generation and optimization of binders in vitro. The resulting nanobodies can be genetically encoded, tagged, and expressed in cells for in vivo localization and functional studies of target proteins. Collectively, these properties make nanobodies ideal for use within echinoderm embryos. This chapter describes the optimization and imaging of genetically encoded nanobodies in the sea urchin embryo. Examples of live-cell antigen tagging (LCAT) and the manipulation of green fluorescent protein (GFP) are shown. We discuss the potentially transformative applications of nanobody technology for probing membrane protein trafficking, cytoskeleton re-organization, receptor signaling events, and gene regulation during echinoderm development.


Assuntos
Biologia Molecular/métodos , Proteínas/isolamento & purificação , Ouriços-do-Mar/ultraestrutura , Anticorpos de Domínio Único/biossíntese , Animais , Camelídeos Americanos/imunologia , Camelus/imunologia , Embrião não Mamífero/ultraestrutura , Desenvolvimento Embrionário/genética , Cadeias Pesadas de Imunoglobulinas/genética , Transporte Proteico/genética , Transporte Proteico/imunologia , Proteínas/genética , Ouriços-do-Mar/crescimento & desenvolvimento , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia
13.
Sci Rep ; 7(1): 17996, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269936

RESUMO

About 50% of the world's arable land is strongly acidic (pH ≤ 5). The low pH solubilizes root-toxic ionic aluminium (Al3+) species from clay minerals, driving the evolution of counteractive adaptations in cultivated crops. The food crop Sorghum bicolor upregulates the membrane-embedded transporter protein SbMATE in its roots. SbMATE mediates efflux of the anionic form of the organic acid, citrate, into the soil rhizosphere, chelating Al3+ ions and thereby imparting Al-resistance based on excluding Al+3 from the growing root tip. Here, we use electrophysiological, radiolabeled, and fluorescence-based transport assays in two heterologous expression systems to establish a broad substrate recognition profile of SbMATE, showing the proton and/or sodium-driven transport of 14C-citrate anion, as well as the organic monovalent cation, ethidium, but not its divalent analog, propidium. We further complement our transport assays by measuring substrate binding to detergent-purified SbMATE protein. Finally, we use the purified membrane protein as an antigen to discover native conformation-binding and transport function-altering nanobodies using an animal-free, mRNA/cDNA display technology. Our results demonstrate the utility of using Pichia pastoris as an efficient eukaryotic host to express large quantities of functional plant transporter proteins. The nanobody discovery approach is applicable to other non-immunogenic plant proteins.


Assuntos
Alumínio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Sorghum/metabolismo , Proteínas de Membrana Transportadoras/genética , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Sorghum/genética , Especificidade por Substrato
14.
Sci Adv ; 2(4): e1600001, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27152359

RESUMO

The world's oceans are a global reservoir of persistent organic pollutants to which humans and other animals are exposed. Although it is well known that these pollutants are potentially hazardous to human and environmental health, their impacts remain incompletely understood. We examined how persistent organic pollutants interact with the drug efflux transporter P-glycoprotein (P-gp), an evolutionarily conserved defense protein that is essential for protection against environmental toxicants. We identified specific congeners of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers that inhibit mouse and human P-gp, and determined their environmental levels in yellowfin tuna from the Gulf of Mexico. In addition, we solved the cocrystal structure of P-gp bound to one of these inhibitory pollutants, PBDE (polybrominated diphenyl ether)-100, providing the first view of pollutant binding to a drug transporter. The results demonstrate the potential for specific binding and inhibition of mammalian P-gp by ubiquitous congeners of persistent organic pollutants present in fish and other foods, and argue for further consideration of transporter inhibition in the assessment of the risk of exposure to these chemicals.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Monitoramento Ambiental , Conformação Proteica/efeitos dos fármacos , Poluição Química da Água , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X , Éteres Difenil Halogenados/química , Éteres Difenil Halogenados/toxicidade , Humanos , Hidrocarbonetos Clorados/química , Hidrocarbonetos Clorados/toxicidade , México , Camundongos , Oceanos e Mares , Praguicidas/química , Praguicidas/toxicidade , Atum/metabolismo
15.
PLoS One ; 11(4): e0152969, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27046168

RESUMO

Organic cation transporter 1 (OCT1, SLC22A1), like many solute carrier 22 (SLC22) family members, is important for the disposition of clinically important drugs, metabolites and signaling molecules. Several studies suggest that SLC22 family (eg. organic anion transporters or OATs and OCTs) bind and possibly transport prostaglandins with relatively high affinity (submicromolar). The affinities of OCT1 and OATs toward PGE2 and PGF2a reported in these cell-based transport studies are considerably greater than for xenobiotics and natural metabolite substrates--in many cases over 100-fold higher. This raises the possibility that prostaglandins are key endogenous substrates and/or that they act on the transporter in a manner different from other substrates such as xenobiotics and lower affinity metabolites. To further investigate OCT1-prostaglandin interactions, we designed biophysical studies using purified bovine OCT1 (Bos taurus, btOCT1/SLC22A1) with PGE2 analogs, in fluorescently labeled and label-free formats. Using fluorescence polarization (FP), we detected a binding of btOCT1 to the PGE2-Rhodamine conjugate at submicromolar affinity, consistent with affinity data for PGE2 from cells over-expressing the related human OCT1. Using purified native btOCT1 as analyte and biotinylated PGE2 analog as ligand, our data from surface plasmon resonance (SPR) revealed that btOCT1 specifically interacts to PGE2 with KD values in the hundred nanomolar range. BtOCT1 also demonstrated a slow association (ka) in the range of 103 M(-1) s(-1) and an even slower dissociation rate (kd) in the range of 10-4 s(-1) for PGE2, suggesting the possibility of a different mode of binding compared to other structurally unrelated transported substrates of low-affinity (eg. drugs, metabolites). Our results complement in vitro transport studies and provide direct evidence that OCT1--which is normally expressed in liver and other tissues--interacts with prostaglandin analogs. While it is not entirely clear from the published literature whether OCTs function as major prostaglandin transporters, the tight binding of the naturally occurring PGE2, as well as the slow dissociation rate, could conceivably affect the transport of lower affinity substrates such as drugs and metabolites by SLC22 transporters. More research is necessary to establish the extent to which individual SLC22 family members actually function as PG transporters in vitro and in vivo and to investigate whether PGs can, independent of being directly transported, alter the ability of SLC22 transporters to handle drugs and other substrates.


Assuntos
Dinoprostona/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Animais , Bovinos , Cinética , Transportador 1 de Cátions Orgânicos/química , Transportador 1 de Cátions Orgânicos/genética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
16.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 3): 732-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25760620

RESUMO

P-glycoprotein (P-gp) is a transporter of great clinical and pharmacological significance. Several structural studies of P-gp and its homologs have provided insights into its transport cycle, but questions remain regarding how P-gp recognizes diverse substrates and how substrate binding is coupled to ATP hydrolysis. Here, four new P-gp co-crystal structures with a series of rationally designed ligands are presented. It is observed that the binding of certain ligands, including an ATP-hydrolysis stimulator, produces a large conformational change in the fourth transmembrane helix, which is positioned to potentially transmit a signal to the nucleotide-binding domains. A new ligand-binding site on the surface of P-gp facing the inner leaflet of the membrane is also described, providing vital insights regarding the entry mechanism of hydrophobic drugs and lipids into P-gp. These results represent significant advances in the understanding of how P-gp and related transporters bind and export a plethora of metabolites, antibiotics and clinically approved and pipeline drugs.


Assuntos
Trifosfato de Adenosina/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Cristalografia por Raios X , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
17.
Structure ; 23(3): 450-460, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25661651

RESUMO

ATP-binding cassette (ABC) exporters are ubiquitously found in all kingdoms of life and their members play significant roles in mediating drug pharmacokinetics and multidrug resistance in the clinic. Significant questions and controversies remain regarding the relevance of their conformations observed in X-ray structures, their structural dynamics, and mechanism of transport. Here, we used single particle electron microscopy (EM) to delineate the entire conformational spectrum of two homologous ABC exporters (bacterial MsbA and mammalian P-glycoprotein) and the influence of nucleotide and substrate binding. Newly developed amphiphiles in complex with lipids that support high protein stability and activity enabled EM visualization of individual complexes in a membrane-mimicking environment. The data provide a comprehensive view of the conformational flexibility of these ABC exporters under various states and demonstrate not only similarities but striking differences between their mechanistic and energetic regulation of conformational changes.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Transportadores de Cassetes de Ligação de ATP/química , Animais , Proteínas de Bactérias/química , Lipídeos de Membrana/química , Camundongos , Microscopia Eletrônica , Modelos Moleculares , Nucleotídeos/química , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Homologia Estrutural de Proteína
18.
Sci Rep ; 4: 6760, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25342225

RESUMO

Nanobodies (Nbs) or single-domain antibodies are among the smallest and most stable binder scaffolds known. In vitro display is a powerful antibody discovery technique used worldwide. We describe the first adaptation of in vitro mRNA/cDNA display for the rapid, automatable discovery of Nbs against desired targets, and use it to discover the first ever reported nanobody against the human full-length glucose transporter, GLUT-1. We envision our streamlined method as a bench-top platform technology, in combination with various molecular evolution techniques, for expedited Nb discovery.


Assuntos
Proteínas de Membrana/imunologia , Anticorpos de Domínio Único/imunologia , Afinidade de Anticorpos/imunologia , Técnicas de Visualização da Superfície Celular , Expressão Gênica , Biblioteca Gênica , Genes Reporter , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/imunologia , Transportador de Glucose Tipo 1/isolamento & purificação , Transportador de Glucose Tipo 1/metabolismo , Humanos , Técnicas In Vitro , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ligação Proteica , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo
19.
FEBS J ; 281(3): 673-82, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24219411

RESUMO

Human P-glycoprotein (P-gp) controls drugs bioavailability by pumping structurally unrelated drugs out of cells. The X-ray structure of the mouse P-gp ortholog has been solved, with two SSS enantiomers or one RRR enantiomer of the selenohexapeptide inhibitor QZ59, found within the putative drug-binding pocket (Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL et al. (2009). Science 323, 1718-1722). This offered the first opportunity to localize the well-known H and R drug-binding sites with respect to the QZ59 inhibition mechanisms of Hoechst 33342 and daunorubicin transports, characterized here in cellulo. We found that QZ59-SSS competes efficiently with both substrates, with K(I,app) values of 0.15 and 0.3 µM, which are 13 and 2 times lower, respectively, than the corresponding K(m,app) values. In contrast, QZ59-RRR non-competitively inhibited daunorubicin transport with moderate efficacy (K(I,app) = 1.9 µM); it also displayed a mixed-type inhibition of the Hoechst 33342 transport, resulting from a main non-competitive tendency (K(i2,app) = 1.6 µM) and a limited competitive tendency (K(i1,app) = 5 µM). These results suggest a positional overlap of QZ59 and drugs binding sites: full for the SSS enantiomer and partial for the RRR enantiomer. Crystal structure analysis suggests that the H site overlaps both QZ59-SSS locations while the R site overlaps the most embedded location.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Modelos Moleculares , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzimidazóis/química , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Ligação Competitiva , Transporte Biológico/efeitos dos fármacos , Domínio Catalítico , Daunorrubicina/química , Daunorrubicina/metabolismo , Daunorrubicina/farmacologia , Humanos , Cinética , Moduladores de Transporte de Membrana/química , Moduladores de Transporte de Membrana/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Células NIH 3T3 , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo
20.
Proc Natl Acad Sci U S A ; 110(33): 13386-91, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23901103

RESUMO

P-glycoprotein (P-gp) is one of the best-known mediators of drug efflux-based multidrug resistance in many cancers. This validated therapeutic target is a prototypic, plasma membrane resident ATP-Binding Cassette transporter that pumps xenobiotic compounds out of cells. The large, polyspecific drug-binding pocket of P-gp recognizes a variety of structurally unrelated compounds. The transport of these drugs across the membrane is coincident with changes in the size and shape of this pocket during the course of the transport cycle. Here, we present the crystal structures of three inward-facing conformations of mouse P-gp derived from two different crystal forms. One structure has a nanobody bound to the C-terminal side of the first nucleotide-binding domain. This nanobody strongly inhibits the ATP hydrolysis activity of mouse P-gp by hindering the formation of a dimeric complex between the ATP-binding domains, which is essential for nucleotide hydrolysis. Together, these inward-facing conformational snapshots of P-gp demonstrate a range of flexibility exhibited by this transporter, which is likely an essential feature for the binding and transport of large, diverse substrates. The nanobody-bound structure also reveals a unique epitope on P-gp.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Sistemas de Liberação de Medicamentos/métodos , Modelos Moleculares , Conformação Proteica , Animais , Mapeamento de Epitopos , Camundongos , Anticorpos de Domínio Único/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA