Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Periodontics Restorative Dent ; 44(2): 197-203, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37471157

RESUMO

Autotransplantation has been proven as a viable method of reconstructing missing teeth. While preparing the recipient site, the bone reduction location depends largely on the surgeon's experience. Inappropriate overpreparation can cause biologic and esthetic complications, such as buccal or lingual bone resorption. This paper provides an innovative method to aid clinicians in precisely preparing a recipient site with the assistance of medical image-processing software and a real-time navigation system. This case report presents the autotransplantation of a mandibular molar using this technique with good short-term (6 months) clinical outcomes, including radiographic bone fill, normal probing pocket depth, physiologic tooth mobility, acceptable gingival level, and satisfactory restoration.


Assuntos
Dente , Humanos , Transplante Autólogo , Dente Molar , Raiz Dentária , Gengiva
2.
ACS Appl Mater Interfaces ; 15(41): 48060-48071, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37788359

RESUMO

The efficient and cost-effective production of green hydrogen is essential to decarbonize heavily polluting sectors such as transportation and heavy manufacturing industries such as metal refining. Polymer electrolyte membrane water electrolysis (PEMWE) is the most promising and rapidly maturing technology for producing green hydrogen at a scale and on demand. However, substantial cost reduction by lowering precious metal catalyst loadings and efficiency improvement is necessary to lower the cost of the produced hydrogen. Porous transport layers (PTLs) play a major role in influencing the PEMWE efficiency and catalyst utilization. Several studies have projected that the use of microporous layers (MPLs) on PTLs can improve the efficiency of PEMWEs, but very limited literature exists on how MPLs affect anodic interfacial properties and oxygen transport in PTLs. In this study, for the first time, we use X-ray microtomography and innovative image processing techniques to elucidate the oxygen flow patterns in PTLs with varying MPL thicknesses. We used stained water to improve contrast of oxygen in PTLs and demonstrate visualization of time averaged oxygen flow patterns. The results show that PTLs with MPLs significantly improve interfacial contact by almost 20% as compared to single layer sintered PTL. For the single layer PTL without MPL, the pore volume utilization for oxygen flow is low and the oxygen follows a viscous fingering flow regime. With MPLs, the pore volume utilization is higher, and the number of oxygen transport pathways is increased significantly. MPLs were also shown to suppress capillary fingering and transition oxygen flow to the viscous fingering regime, which has been proven to decrease site masking effects. Finally, durability tests showed the least voltage degradation for thin MPL and thicker MPLs run into mass transport limitations. Based on these findings, PTL/MPL design optimization strategies are proposed for enabling low catalyst loadings and improving durability.

3.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894826

RESUMO

The effect is studied of water-suspended soot microparticles on the actin cytoskeleton, apoptosis, and proliferation in the gill epithelium of pearl gourami. To this end, the fish are kept in aquariums with 0.005 g/L of soot for 5 and 14 days. Laser confocal microscopy is used to find that at the analyzed times of exposure to the pollutant zones appear in the gill epithelium, where the actin framework of adhesion belts dissociates and F-actin either forms clumps or concentrates perinuclearly. It is shown that the exposure to soot microparticles enhances apoptosis. On day 5, suppression of the proliferation of cells occurs, but the proliferation increases to the control values on day 14. Such a paradoxical increase in proliferation may be a compensatory process, maintaining the necessary level of gill function under the exposure to toxic soot. This process may occur until the gills' recovery reserve is exhausted. In general, soot microparticles cause profound changes in the actin cytoskeleton in gill cells, greatly enhance cell death, and influence cell proliferation as described. Together, these processes may cause gill dysfunction and affect the viability of fish.


Assuntos
Brânquias , Fuligem , Animais , Brânquias/metabolismo , Peixes , Actinas/metabolismo , Morte Celular , Citoesqueleto de Actina , Proliferação de Células
4.
Front Pediatr ; 11: 1203894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635786

RESUMO

Introduction: Porphyromonas gingivalis (P. gingivalis), a major periodontal pathogen, causes intrauterine infection/inflammation. Offspring exposed to intrauterine infection/inflammation have an increased risk of neurological disorders, regardless of gestational age. However, the relationship between maternal periodontitis and offspring functional/histological changes in the brain has not yet been elucidated. Methods: In this study, we used a gestational mouse model to investigate the effects of maternal odontogenic infection of P. gingivalis on offspring behavior and brain tissue. Results: The step-through passive avoidance test showed that the latency of the acquisition trial was significantly shorter in the P. gingivalis group (p < 0.05), but no difference in spontaneous motor/exploratory parameters by open-field test. P. gingivalis was diffusely distributed throughout the brain, especially in the hippocampus. In the hippocampus and amygdala, the numbers of neuron cells and cyclic adenosine monophosphate response element binding protein-positive cells were significantly reduced (p < 0.05), whereas the number of ionized calcium binding adapter protein 1-positive microglia was significantly increased (p < 0.05). In the hippocampus, the number of glial fibrillary acidic protein-positive astrocytes was also significantly increased (p < 0.05). Discussion: The offspring of P. gingivalis-infected mothers have reduced cognitive function. Neurodegeneration/neuroinflammation in the hippocampus and amygdala may be caused by P. gingivalis infection, which is maternally transmitted. The importance of eliminating maternal P. gingivalis-odontogenic infection before or during gestation in maintenance healthy brain function in offspring should be addressed in near future.

7.
Molecules ; 27(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364487

RESUMO

Visceral pain (VP) is the organ-derived nociception in which increased inflammatory reaction and exaggerated activation of the central nucleus of the amygdala (CeA) may contribute to this deficiency. Considering the amygdala also serves as the integration center for olfaction, the present study aimed to determine whether olfactory stimulation (OS) would effectively depress over-activation and inflammatory reaction in CeA, and successfully relieve VP-induced abnormalities. Adult rats subjected to intraperitoneal injection of acetic acid inhaled lavender essential oil for 2 or 4 h. The potential benefits of OS were determined by measuring the pro-inflammatory cytokine level, intracellular potassium and the upstream small-conductance calcium-activated potassium (SK) channel expression, together with detecting the stress transmitters that participated in the modulation of CeA activity. Results indicated that in VP rats, strong potassium intensity, reduced SK channel protein level, and increased corticotropin-releasing factor, c-fos, and substance P immuno-reactivities were detected in CeA. Enhanced CeA activation corresponded well with increased inflammatory reaction and decreased locomotion, respectively. However, in rats subjected to VP and received OS, all above parameters were significantly returned to normal levels with higher change detected in treating OS of 4h. As OS successfully depresses inflammation and CeA over-activation, application of OS may serve as an alternative and effective strategy to efficiently relieve VP-induced deficiency.


Assuntos
Dor Visceral , Ratos , Animais , Dor Visceral/tratamento farmacológico , Olfato , Hormônio Liberador da Corticotropina , Potássio , Fenótipo
8.
Behav Brain Res ; 435: 114035, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35926562

RESUMO

Dementia with Lewy bodies (DLB), a highly prevalent neurodegenerative disorder, causes motor and cognitive deficits. The main pathophysiologies of DLB are glutamate excitotoxicity and accumulation of Lewy bodies comprising α-synuclein (α-syn) and ß-amyloid (Aß). Amitriptyline (AMI) promotes expression of glutamate transporter-1 and glutamate reuptake. In this study, we measured the effects of AMI on behavioral and neuronal function in a DLB rat model. We used rivastigmine (RIVA) as a positive control. To establish the DLB rat model, male Wistar rats were stereotaxically injected with recombinant adenoassociated viral vector with the SNCA gene (10 µg/10 µL) and Aß (5 µg/2.5 µL) into the left ventricle and prefrontal cortex, respectively. AMI (10 mg/kg/day, i.p.), RIVA (2 mg/kg/day, i.p.), or saline was injected intraperitoneally after surgery. From the 29th day, behavioral tests were performed to evaluate the motor and cognitive functions of the rats. Immunohistochemical staining was used to assess neuronal changes. We measured the α-syn level, number of newborn cells, and neuronal density in the hippocampus and in the nigrostriatal dopaminergic system. The DLB group exhibited deficit in object recognition. Both the AMI and RIVA treatments reversed these deficits. Histologically, the DLB rats exhibited cell loss in the substantia nigra pars compacta and in the hippocampal CA1 area. AMI reduced this cell loss, but RIVA did not. In addition, the DLB rats exhibited a lower number of newborn cells and higher α-syn levels in the dentate gyrus (DG). AMI did not affect α-syn accumulation but recovered neurogenesis in the DG of the rats, whereas RIVA reversed the α-syn accumulation but did not affect neurogenesis in the rats. We suggest that AMI may have potential for use in the treatment of DLB.


Assuntos
Doença por Corpos de Lewy , Amitriptilina , Animais , Cognição , Glutamatos , Doença por Corpos de Lewy/tratamento farmacológico , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Masculino , Ratos , Ratos Wistar , alfa-Sinucleína/metabolismo
10.
J Gerontol A Biol Sci Med Sci ; 77(2): 235-242, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34378774

RESUMO

Presbyphagia is age-related changes in swallowing function, which imposes a high risk of aspiration in older adults. Considering olfactory stimulation (OS) can influence behavioral activities by modulating neuronal excitability, the present study aims to determine whether OS could improve the swallowing function of aged rats through activating the central neuronal networks and downstream muscular activities participated in the control of swallowing. Aged male Wistar rats received OS by inhaling a mixture of plant-based volatile molecules twice a day for 12 days were subjected to functional magnetic resonance imaging (fMRI) and c-fos, choline acetyltransferase (ChAT) immunostaining to detect the neuronal activities of the orbitofrontal cortex (OFC) and medullary nuclei engaged in swallowing control, respectively. The functional effects of OS on downstream pharyngeal muscle activity were examined by evaluating the dihydropyridine receptor-ryanodine receptor (DHPR-RyR)-mediated intramuscular Ca2+ expression, and analyzing the amplitude/frequency of muscle contraction, respectively. In untreated rats, only moderate signal of fMRI and mild c-fos/ChAT expression was detected in the OFC and medullary nuclei, respectively. However, following OS, intense signals of fMRI and immunostaining were clearly expressed in the orbitofronto-medullary networks. Functional data corresponded well with above findings in which OS significantly enhanced DHPR-RyR-mediated intramuscular Ca2+ expression, effectively facilitated a larger amplitude of pharyngeal muscle contraction, and exhibited better performance in consuming larger amounts of daily dietary. As OS successfully activates the neuromuscular activities participated in the control of swallowing, applying OS may serve as an effective, easy, and safe strategy to greatly improve the swallow function of aging populations.


Assuntos
Canais de Cálcio Tipo L , Cálcio , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Deglutição , Masculino , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-34299815

RESUMO

BACKGROUND: Hypertension and periodontal diseases share several risk factors. Inflammation biomarkers in saliva are related to hypertension and periodontal disease. The aim of this study was to explore the role of the salivary inflammatory biomarkers in the treatment effectiveness of patients with hypertension and periodontal disease. METHODS: This observational study enrolled 160 subjects diagnosed with periodontitis, 40 of which had a history of hypertension. All subjects had completed scaling and root planning therapeutic procedures within four weeks. The clinical periodontal parameters (i.e., bleeding on probing, plaque control record (PCR), and probing depth (PD)) were evaluated before and after the treatment. Pro-inflammatory markers were determined using a commercial kit. RESULTS: The recovery rate (PD 4-9 mm) in non-hypertensive subjects was significantly higher than in hypertensive subjects (60.47% vs. 52.60%, respectively; p = 0.04). All clinical parameters, excluding PCR, positively correlated with salivary IL-1ß at baseline and after completing treatment. Our results showed that increased salivary IL-1ß levels were positively associated with decreased PCR (ß = -27.65 and p = 0.05) and PD recovery rate (ß = -17.05 and p = 0.02) in hypertensive subjects. CONCLUSIONS: The present study sheds important light on the clinical use of salivary pro-inflammatory cytokines as valuable biomarkers for predicting the treatment effectiveness of patients suffering from hypertension and periodontitis.


Assuntos
Hipertensão , Doenças Periodontais , Biomarcadores , Humanos , Saliva , Fumar , Resultado do Tratamento
12.
Antioxidants (Basel) ; 10(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068192

RESUMO

Early-life sleep deprivation (ESD) is a serious condition with severe cognitive sequelae. Considering hippocampus plays an essential role in cognitive regulation, the present study aims to determine whether melatonin, a neuroendocrine beard with significant anti-oxidative activity, would greatly depress the hippocampal oxidative stress, improves the molecular machinery, and consequently exerts the neuro-protective effects following ESD. Male weanling Wistar rats (postnatal day 21) were subjected to ESD for three weeks. During this period, the animals were administered normal saline or melatonin (10 mg/kg) via intraperitoneal injection between 09:00 and 09:30 daily. After three cycles of ESD, the animals were kept under normal sleep/wake cycle until they reached adulthood and were sacrificed. The results indicated that ESD causes long-term effects, such as impairment of ionic distribution, interruption of the expressions of neurotransmitters and receptors, decreases in the levels of several antioxidant enzymes, and impairment of several signaling pathways, which contribute to neuronal death in hippocampal regions. Melatonin administration during ESD prevented these effects. Quantitative evaluation of cells also revealed a higher number of neurons in the melatonin-treated animals when compared with the saline-treated animals. As the hippocampus is critical to cognitive activity, preserving or even improving the hippocampal molecular machinery by melatonin during ESD not only helps us to better understand the underlying mechanisms of ESD-induced neuronal dysfunction, but also the therapeutic use of melatonin to counteract ESD-induced neuronal deficiency.

13.
Polymers (Basel) ; 13(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800210

RESUMO

In this study, five urethane acrylates (UAs), namely aliphatic urethane hexa-acrylate (87A), aromatic urethane hexa-acrylate (88A), aliphatic UA (588), aliphatic urethane triacrylate diluted in 15% HDD (594), and high-functional aliphatic UA (5812), were selected to formulate five UA-based photopolymer resins for digital light processing (DLP)-based 3D printing. Each UA (40 wt%) was added and blended homogenously with ethoxylated pentaerythritol tetraacrylate (40 wt%), isobornyl acrylate (12 wt%), diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (3 wt%), and a pink acrylic (5 wt%). Each UA-based resin specimen was designed using CAD software and fabricated using a DLP 3D printer to specific dimensions. Characteristics, mechanical properties, and cytotoxicity levels of these designed UA-based resins were investigated and compared with a commercial 3D printing denture base acrylic resin (BB base) control group at different UV exposure times. Shore hardness-measurement data and MTT assays were analyzed using a one-way analysis of variance with Bonferroni's post hoc test, whereas viscosity, maximum strength, and modulus were analyzed using the Kruskal-Wallis test (α = 0.05). UA-based photopolymer resins with tunable mechanical properties were successfully prepared by replacing the UA materials and the UV exposure times. After 15 min of UV exposure, the 5812 and 594 groups exhibited higher viscosities, whereas the 88A and 87A groups exhibited lower viscosities compared with the BB base group. Maximum flexural strength, flexural modulus, and Shore hardness values also revealed significant differences among materials (p < 0.001). Based on MTT assay results, the UA-based photopolymer resins were nontoxic. In the present study, mechanical properties of the designed photopolymer resins could be adjusted by changing the UA or UV exposure time, suggesting that aliphatic urethane acrylate has good potential for use in the design of printable resins for DLP-type 3D printing in dental applications.

14.
ACS Appl Mater Interfaces ; 13(6): 7152-7160, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33528999

RESUMO

Four pyrene-porphyrins were synthesized to study the isomer effect on the photovoltaic performance of dye-sensitized solar cells. One of these porphyrins is conjugated with a terminal pyrene, whereas the other three are each attached with a pyrene bearing an extra donor group. According to the positions of the extra donor and porphyrin core on pyrene, the 1,6-, 1,8-, and 2,7-isomers were compared for their fundamental and photovoltaic properties. For fundamental properties, UV-visible absorption, fluorescence emission, electrochemistry, and DFT calculations were carried out. For photovoltaic measurements, the seemingly inferior 1,8-isomer outperforms others with an overall efficiency of 10.30% under one-sun irradiation. Superior photovoltaic performance of the 1,8-isomeric dye may be related to the so-called umbrella effect. The findings of this work may provide insight into isomeric dye design for future applications.

15.
J Clin Med ; 9(12)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260404

RESUMO

This study aimed to compare different types of right breast cancer radiotherapy planning techniques and to estimate the whole-body effective doses and the critical organ absorbed doses. The three planning techniques are intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT; two methods) and hybrid 3D-CRT/IMRT (three-dimensional conformal radiotherapy/intensity-modulated radiotherapy). The VMAT technique includes two methods to deliver a dose: non-continuous partial arc and continuous partial arc. A thermoluminescent dosimeter (TLD) is placed in the RANDO phantom to estimate the organ absorbed dose. Each planning technique applies 50.4 Gy prescription dose and treats critical organs, including the lung and heart. Dose-volume histogram was used to show the planning target volume (V95%), homogeneity index (HI), conformity index (CI), and other optimized indices. The estimation of whole-body effective dose was based on the International Commission on Radiation Protection (ICRP) Publication 60 and 103. The results were as follows: Continuous partial arc and non-continuous partial arc showed the best CI and HI. The heart absorbed doses in the continuous partial arc and hybrid 3D-CRT/IMRT were 0.07 ± 0.01% and 0% (V5% and V10%, respectively). The mean dose of the heart was lowest in hybrid 3D-CRT/IMRT (1.47 Gy ± 0.02). The dose in the left contralateral lung (V5%) was lowest in continuous partial arc (0%). The right ipsilateral lung average dose and V20% are lowest in continuous partial arc. Hybrid 3D-CRT/IMRT has the lowest mean dose to contralateral breast (organs at risk). The whole-body effective doses for ICRP-60 and ICRP-103 were highest in continuous partial arc (2.01 Sv ± 0.23 and 2.89 Sv ± 0.15, respectively). In conclusion, the use of VMAT with continuous arc has a lower risk of radiation pneumonia, while hybrid 3D-CRT/IMRT attain lower secondary malignancy risk and cardiovascular complications.

16.
Antioxidants (Basel) ; 9(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202817

RESUMO

Long-term poor glycemic control negatively affects macrovascular and microvascular diseases, as well as wound restoration. Buckwheat is a good source of rutin (quercetin-3-O-rutoside) and has benefits in regulating blood sugar. This study was to evaluate the antioxidant and anti-inflammatory effects of rutin on wound healing in streptozotocin-induced hyperglycemic rats. Eighteen male Wistar rats were randomly divided into three groups: normal (NDM), hyperglycemic (DM), and hyperglycemic with rutin (DMR). After induction of hyperglycemia for 2 days, a 15 × 15 mm wound was induced on the back of each rat. Intraperitoneal injection of rutin significantly ameliorated diabetes-induced body weight loss and improved metabolic dysfunctions of hyperglycemic rats. Based on appearance and histopathological staining, rutin promotes wound healing and inhibits production of inflammatory cells. The immunoblotting data indicated that rutin promotes production of antioxidant enzymes induced by nuclear factor erythroid 2-related factor 2 (NRF2), inhibits the expression of matrix metalloproteinases (MMPs) regulated by NF-κB, and decreases the expression of vascular endothelial growth factor (VEGF). It also promotes the expression of neurogenic-related protein (UCH-L1). The aforementioned results indicated that rutin reduces oxidative stress and inflammatory response in hyperglycemic rats, promoting wound healing and subsequently reducing the risk of wound ulcers.

17.
Soft Matter ; 16(14): 3505-3513, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32215388

RESUMO

Previous studies have shown that the plateau modulus Gp of the wormlike micelles formed in water driven by hydrophobic interactions is a constant upon heating, similar to polymer solutions, and Gp of the reverse worms formed in oils driven by hydrogen bonding decreases with increasing temperature. In this work, we investigated the reverse worms induced by three chloride salts that bind lecithin through different strengths of electrostatic interactions, in the order of LaCl3 > CaCl2 > LiCl. We correlated the interaction strengths with the temperature-dependent rheological properties and found that upon heating, Gp for all the reverse worms driven by electrostatic interactions decays slower than that driven by the weak temperature-sensitive hydrogen bonding. Furthermore, the decay rates of Gp follow an order in the inverse relation to the interaction strength, LaCl3≤ CaCl2 < LiCl, indicating that the dependence of Gp on temperature can reflect the strength of the driving forces for micellization. We utilized Fourier transform infrared spectroscopy (FTIR) to confirm the weakening of the interaction and the small angle X-ray scattering (SAXS) technique to reveal the decrease in the lengths of the reverse worms as temperature increases, both of which echo the changes in the rheological properties.

18.
Neuroscience ; 429: 282-292, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689489

RESUMO

Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons. End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN. Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and ß3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as ß3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and ß3-tubulin expression. Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the ß3-tubulin remodeling may occur via CaMKII-mediated Ca2+ signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway.


Assuntos
Melatonina , Animais , Citoesqueleto , Melatonina/farmacologia , Camundongos , Regeneração Nervosa , Ratos , Ratos Wistar , Receptores de Melatonina
19.
BMC Oral Health ; 19(1): 201, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31470840

RESUMO

BACKGROUND: Periodontal disease is an inflammatory disease in which pathogenic infections trigger a series of inflammatory responses and redox regulation. The hypothesis of this study was that a host's redox regulation, as modified by genetic polymorphisms, may affect periodontal disease activities (including the plaque index (PlI), bleeding on probing (BOP), and pocket depth (PD)) during periodontal therapy. METHODS: In total, 175 patients diagnosed with periodontitis were recruited from the Department of Periodontology, Taipei Medical University Hospital. Both saliva samples and clinical measurements (PlI, BOP, and PD) were taken at the baseline and at 1 month after completing treatment. Salivary manganese superoxide dismutase (MnSOD) and catalase, and corresponding genetic polymorphisms (MnSOD, T47C, rs4880 and Catalase, C-262 T, rs1001179) were determined. The extent of change (Δ) of MnSOD or catalase was calculated by subtracting the concentration after completing treatment from that at the baseline. RESULTS: Subjects who carried the Catalase CC genotype had significantly higher salivary MnSOD or catalase levels. The MnSOD genotype had a significant effect on the percentage of PDs of 4~9 mm (p = 0.02), and salivary ΔMnSOD had a significant effect on the PlI (p = 0.03). The Catalase genotype had a significant effect on the PlI (p = 0.01~0.04), but the effect was not found for the mean PlI or PD. There was a significant interaction between the MnSOD genotype and salivary ΔMnSOD on PDs of 4~9 mm. After adjusting for gender, years of schooling, smoking status, and alcohol consumption, subjects with ΔMnSOD of < 0 µg/ml or Δcatalase of < 0 µg/ml had significantly higher 5.58- or 5.17-fold responses to scaling and root planing treatment. CONCLUSIONS: The MnSOD T47C genotype interferes with the phenotype of salivary antioxidant level, alters MnSOD levels, and influences the PD recovery. MnSOD and catalase gene polymorphism associated with phenotype expression and susceptibility in periodontal root planing treatment responses.


Assuntos
Catalase/genética , Predisposição Genética para Doença/genética , Doenças Periodontais/genética , Superóxido Dismutase/genética , Raspagem Dentária , Feminino , Genótipo , Humanos , Masculino , Estresse Oxidativo , Fenótipo , Polimorfismo Genético
20.
Sci Rep ; 9(1): 13252, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31520077

RESUMO

With the great extension of the human lifespan in recent times, many aging diseases have inevitably followed. Dementia is one of the most-commom neurodegenerative aging diseases, in which inflammation-related Alzheimer's disease (AD) is the most prevalent cause of dementia. Amyloid accumulation in the brain, which occurs before any clinical presentations, might be the first and key step in the development of AD. However, many clinical trials have attempted to remove amyloid from brains of AD patients, but none has so far been successful. Negatively charged plasmon-activated water (PAW) is created by resonantly illuminated gold (Au) nanoparticles (NPs), which reduce the hydrogen-bonded (HB) structure of water. PAW was found to possess anti-oxidative and anti-inflammatory effects. Herein, we report on an innovative strategy to retard the progression of AD by the daily consumption of PAW instead of normal deionized (DI) water. APPswe/PS1dE9 transgenic mice were treated with PAW or DI water from the age of 5 months for the next 9 months. Encouragingly, compared to DI water-treated mice, mice treated with PAW presented better memory performance on a test of novel object recognition and had a significantly lower amyloid burden according to 18F-florbetapir amyloid-PET and phosphorylated (p)-tau burden according to Western blotting and immunohistochemistry measurements. There were no obvious side effects in PAW-treated mice. Collectively, our findings support that PAW was able to reduce the amyloid and p-tau burden and improve memory in an AD mouse model. However, the protein levels of molecules involved in amyloid metabolism and oligomeric amyloid did not change. We propose that the effects of PAW of reducing the amyloid burden and improving memory function cannot be attributed to synthesis/degradation of amyloid-ßprotein but probably in preventing aggregation of amyloid-ß proteins or other mechanisms, including anti-inflammation. Further applications of PAW in clinical trials to prevent the progression of AD are being designed.


Assuntos
Doença de Alzheimer/complicações , Modelos Animais de Doenças , Transtornos da Memória/prevenção & controle , Nanopartículas Metálicas/administração & dosagem , Água/química , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Progressão da Doença , Ouro/química , Humanos , Ligação de Hidrogênio , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Nanopartículas Metálicas/química , Camundongos , Camundongos Transgênicos , Presenilina-1/fisiologia , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA