Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 11: 1436865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156133

RESUMO

Visceral white adipose tissues (WAT) regulate systemic lipid metabolism and inflammation. Dysfunctional WAT drive chronic inflammation and facilitate atherosclerosis. Adipose tissue-associated macrophages (ATM) are the predominant immune cells in WAT, but their heterogeneity and phenotypes are poorly defined during atherogenesis. The scavenger receptor CD36 mediates ATM crosstalk with other adipose tissue cells, driving chronic inflammation. Here, we combined the single-cell RNA sequencing technique with cell metabolic and functional assays on major WAT ATM subpopulations using a diet-induced atherosclerosis mouse model (Apoe-null). We also examined the role of CD36 using Apoe/Cd36 double-null mice. Based on transcriptomics data and differential gene expression analysis, we identified a previously undefined group of ATM displaying low viability and high lipid metabolism and labeled them as "unhealthy macrophages". Their phenotypes suggest a subpopulation of ATM under lipid stress. We also identified lipid-associated macrophages (LAM), which were previously described in obesity. Interestingly, LAM increased 8.4-fold in Apoe/Cd36 double-null mice on an atherogenic diet, but not in Apoe-null mice. The increase in LAM was accompanied by more ATM lipid uptake, reduced adipocyte hypertrophy, and less inflammation. In conclusion, CD36 mediates a delicate balance between lipid metabolism and inflammation in visceral adipose tissues. Under atherogenic conditions, CD36 deficiency reduces inflammation and increases lipid metabolism in WAT by promoting LAM accumulation.

2.
bioRxiv ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071358

RESUMO

Macrophage efferocytosis, the process by which phagocytes engulf and remove apoptotic cells (ACs), plays a critical role in maintaining tissue homeostasis. Efficient efferocytosis prevents secondary necrosis, mitigates chronic inflammation, and impedes atherosclerosis progression. However, the regulatory mechanisms of efferocytosis under atherogenic conditions remain poorly understood. We previously demonstrated that oxidized LDL (oxLDL), an atherogenic lipoprotein, induces mitochondrial reactive oxygen species (mtROS) in macrophages via CD36. In this study, we demonstrate that macrophage mtROS facilitate continual efferocytosis through a positive feedback mechanism. However, oxLDL disrupts continual efferocytosis by dysregulating the internalization of ACs. This disruption is mediated by an overproduction of mtROS. Mechanistically, oxLDL/CD36 signaling promotes the translocation of cytosolic PKM2 to mitochondria, facilitated by the chaperone GRP75. Mitochondrial PKM2 then binds to Complex III of the electron transport chain, inducing mtROS production. This study elucidates a novel regulatory mechanism of efferocytosis in atherosclerosis, providing potential therapeutic targets for intervention. SUMMARY: Macrophages clear apoptotic cells through a process called efferocytosis, which involves mitochondrial ROS. However, the atherogenic oxidized LDL overstimulates mitochondrial ROS via the CD36-PKM2 pathway, disrupting continual efferocytosis. This finding elucidates a novel molecular mechanism that explains defects in efferocytosis, driving atherosclerosis progression.

3.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37662321

RESUMO

Obesity is a worldwide epidemic and places individuals at a higher risk for developing comorbidities that include cardiovascular disease and type 2 diabetes. Adipose tissue contains adipocytes that are responsible for lipid metabolism and reducing misdirected lipid storage. Adipocytes facilitate this process through insulin-mediated uptake of glucose and its subsequent metabolism into triglycerides for storage. During obesity, adipocytes become insulin resistant and have a reduced ability to mediate glucose import, thus resulting in whole-body metabolic dysfunction. Scavenger receptor class B type I (SR-BI) has been implicated in glucose uptake in skeletal muscle and adipocytes via its native ligands, apolipoprotein A-1 and high-density lipoproteins. Further, SR-BI translocation to the cell surface in adipocytes is sensitive to insulin stimulation. Using adipocytes differentiated from ear mesenchymal stem cells isolated from wild-type and SR-BI knockout (SR-BI -/- ) mice as our model system, we tested the hypothesis that SR-BI is required for insulin-mediated glucose uptake and regulation of energy balance in adipocytes. We demonstrated that loss of SR-BI in adipocytes resulted in inefficient glucose uptake regardless of cell surface expression levels of glucose transporter 4 compared to WT adipocytes. We also observed reduced glycolytic capacity, increased lipid biosynthesis, and dysregulated expression of lipid metabolism genes in SR-BI -/- adipocytes compared to WT adipocytes. These results partially support our hypothesis and suggest a novel role for SR-BI in glucose uptake and metabolic homeostasis in adipocytes.

4.
iScience ; 25(9): 104963, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36072548

RESUMO

Na/K-ATPase (NKA), besides its ion transporter function, is a signal transducer by regulating Src family kinases (SFK). The signaling NKA contributes to oxidized LDL-induced macrophage foam cell formation and interacts with TLR4. However, its role in lipopolysaccharides (LPS)-induced signaling and glycolytic switch in macrophages remains unclear. Using peritoneal macrophages from NKA α1 haploinsufficient mice (NKA α1+/-), we found that NKA α1 haploinsufficiency led to enhanced LPS-stimulated NF-κB pathway, ROS signaling, and pro-inflammatory cytokines. Intraperitoneal injection of LPS resulted in more severe lung inflammation and injury with lower survival rate in NKA α1+/- mice. Additionally, LPS induced a higher extent of the metabolic switch from oxidative phosphorylation to glycolysis. Mechanistically, NKA α1 interacted with TLR4 and Lyn. The presence of NKA α1 in this complex attenuated Lyn activation by LPS, which subsequently restricted the downstream ROS and NF-κB signaling. In conclusion, we demonstrated that NKA α1 suppresses LPS-induced macrophage pro-inflammatory signaling through Lyn.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA