Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Front Microbiol ; 15: 1304734, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585707

RESUMO

Listeria monocytogenes is a foodborne pathogen of concern in dairy processing facilities, with the potential to cause human illness and trigger regulatory actions if found in the product. Monitoring for Listeria spp. through environmental sampling is recommended to prevent establishment of these microorganisms in dairy processing environments, thereby reducing the risk of product contamination. To inform on L. monocytogenes diversity and transmission, we analyzed genome sequences of L. monocytogenes strains (n = 88) obtained through the British Columbia Dairy Inspection Program. Strains were recovered from five different dairy processing facilities over a 10 year period (2007-2017). Analysis of whole genome sequences (WGS) grouped the isolates into nine sequence types and 11 cgMLST types (CT). The majority of isolates (93%) belonged to lineage II. Within each CT, single nucleotide polymorphism (SNP) differences ranged from 0 to 237 between isolates. A highly similar (0-16 SNPs) cluster of over 60 isolates, collected over 9 years within one facility (#71), was identified suggesting a possible persistent population. Analyses of genome content revealed a low frequency of genes associated with stress tolerance, with the exception of widely disseminated cadmium resistance genes cadA1 and cadA2. The distribution of virulence genes and mutations within internalin genes varied across the isolates and facilities. Further studies are needed to elucidate their phenotypic effect on pathogenicity and stress response. These findings demonstrate the diversity of L. monocytogenes isolates across dairy facilities in the same region. Findings also showed the utility of using WGS to discern potential persistence events within a single facility over time.

2.
Phytopathology ; : PHYTO12230483IA, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38330057

RESUMO

The landscape of scientific publishing is experiencing a transformative shift toward open access, a paradigm that mandates the availability of research outputs such as data, code, materials, and publications. Open access provides increased reproducibility and allows for reuse of these resources. This article provides guidance for best publishing practices of scientific research, data, and associated resources, including code, in The American Phytopathological Society journals. Key areas such as diagnostic assays, experimental design, data sharing, and code deposition are explored in detail. This guidance aligns with that observed by other leading journals. We hope the information assembled in this paper will raise awareness of best practices and enable greater appraisal of the true effects of biological phenomena in plant pathology.

3.
J Vasc Surg Venous Lymphat Disord ; : 101844, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38316291

RESUMO

OBJECTIVE: Lymphedema is a common complication of cancer treatment, such as lymphadenectomy and radiation therapy. It is a debilitating condition with pathologic tissue changes that hinder effective curative treatment and jeopardize patients' quality of life. Various attempts to prevent the development of lymphedema have been made, with improvements in the incidence of the pathology. However, it is still prevalent among survivors of cancer. In this paper, we review both molecular therapeutics and immediate surgical lymphatic reconstruction as treatment strategies after lymphadenectomy. Specifically, we discuss pro-lymphangiogenic molecules that have proved efficient in animal models of lymphedema and clinical trials, and review currently available microsurgical techniques of immediate lymphatic reconstruction. METHODS: A literature search was conducted in PubMed, Embase, Cochrane Library, and Google Scholar through May 2022. Searches were done separately for molecular therapeutics and microsurgical techniques for immediate lymphatic reconstruction. Search terms used for (1) non-surgical methods include 'lymphangiogenesis,' 'lymphedema,' 'growth factor,' and 'gene therapy.' Search terms used for (2) surgical methods include 'lymphedema,' 'lymph node excision,' 'lymphatic vessels,' 'primary prevention,' and 'microsurgery.' RESULTS: Various pro-lymphangiogenic factors with therapeutic potential include VEGF-C, VEGF-D, HGF, bFGF, PDGF, IGF, Retinoic acid, Ang-1, S1P, TLR4, and IL-8. Microsurgical lymphatic reconstruction for prevention of secondary lymphedema includes lymphovenous anastomosis, vascularized lymph node flap transfer, and lymph-interpositional flap transfer, with promising clinical outcomes. CONCLUSIONS: With growing knowledge of the lymphangiogenic pathway and lymphedema pathology and advances in microsurgical techniques to restore lymphatic channels, molecular and surgical approaches may represent a promising method for primary prevention of lymphedema.

4.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37930748

RESUMO

Mobile genetic elements can innovate bacteria with new traits. In plant pathogenic Streptomyces, frequent and recent acquisition of integrative and conjugative or mobilizable genetic elements is predicted to lead to the emergence of new lineages that gained the capacity to synthesize Thaxtomin, a phytotoxin neccesary for induction of common scab disease on tuber and root crops. Here, we identified components of the Streptomyces-potato pathosystem implicated in virulence and investigated them as a nested and interacting system to reevaluate evolutionary models. We sequenced and analysed genomes of 166 strains isolated from over six decades of sampling primarily from field-grown potatoes. Virulence genes were associated to multiple subtypes of genetic elements differing in mechanisms of transmission and evolutionary histories. Evidence is consistent with few ancient acquisition events followed by recurrent loss or swaps of elements carrying Thaxtomin A-associated genes. Subtypes of another genetic element implicated in virulence are more distributed across Streptomyces. However, neither the subtype classification of genetic elements containing virulence genes nor taxonomic identity was predictive of pathogenicity on potato. Last, findings suggested that phytopathogenic strains are generally endemic to potato fields and some lineages were established by historical spread and further dispersed by few recent transmission events. Results from a hierarchical and system-wide characterization refine our understanding by revealing multiple mechanisms that gene and bacterial dispersion have had on shaping the evolution of a Gram-positive pathogen in agricultural settings.


Assuntos
Produtos Agrícolas , Streptomyces , Virulência/genética , Fenótipo , Streptomyces/genética , Sequências Repetitivas Dispersas
6.
mSystems ; 8(4): e0033323, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37477440

RESUMO

Agrobacteria are a diverse, polyphyletic group of prokaryotes with multipartite genomes capable of transferring DNA into the genomes of host plants, making them an essential tool in plant biotechnology. Despite their utility in plant transformation, genome-wide transcriptional regulation is not well understood across the three main lineages of agrobacteria. Transcription start sites (TSSs) are a necessary component of gene expression and regulation. In this study, we used differential RNA-seq and a TSS identification algorithm optimized on manually annotated TSS, then validated with existing TSS to identify thousands of TSS with nucleotide resolution for representatives of each lineage. We extend upon the 356 TSSs previously reported in Agrobacterium fabrum C58 by identifying 1,916 TSSs. In addition, we completed genomes and phenotyping of Rhizobium rhizogenes C16/80 and Allorhizobium vitis T60/94, identifying 2,650 and 2,432 TSSs, respectively. Parameter optimization was crucial for an accurate, high-resolution view of genome and transcriptional dynamics, highlighting the importance of algorithm optimization in genome-wide TSS identification and genomics at large. The optimized algorithm reduced the number of TSSs identified internal and antisense to the coding sequence on average by 90.5% and 91.9%, respectively. Comparison of TSS conservation between orthologs of the three lineages revealed differences in cell cycle regulation of ctrA as well as divergence of transcriptional regulation of chemotaxis-related genes when grown in conditions that simulate the plant environment. These results provide a framework to elucidate the mechanistic basis and evolution of pathology across the three main lineages of agrobacteria. IMPORTANCE Transcription start sites (TSSs) are fundamental for understanding gene expression and regulation. Agrobacteria, a group of prokaryotes with the ability to transfer DNA into the genomes of host plants, are widely used in plant biotechnology. However, the genome-wide transcriptional regulation of agrobacteria is not well understood, especially in less-studied lineages. Differential RNA-seq and an optimized algorithm enabled identification of thousands of TSSs with nucleotide resolution for representatives of each lineage. The results of this study provide a framework for elucidating the mechanistic basis and evolution of pathology across the three main lineages of agrobacteria. The optimized algorithm also highlights the importance of parameter optimization in genome-wide TSS identification and genomics at large.


Assuntos
Genômica , Transcriptoma , Regiões Promotoras Genéticas , Regulação da Expressão Gênica , Nucleotídeos
7.
Curr Biol ; 33(14): 2988-3001.e4, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37490853

RESUMO

The capacity of beneficial microbes to compete for host infection-and the ability of hosts to discriminate among them-introduces evolutionary conflict that is predicted to destabilize mutualism. We investigated fitness outcomes in associations between legumes and their symbiotic rhizobia to characterize fitness impacts of microbial competition. Diverse Bradyrhizobium strains varying in their capacity to fix nitrogen symbiotically with a common host plant, Acmispon strigosus, were tested in full-factorial coinoculation experiments involving 28 pairwise strain combinations. We analyzed the effects of interstrain competition and host discrimination on symbiotic-interaction outcomes by relativizing fitness proxies to clonally infected and uninfected controls. More than one thousand root nodules of coinoculated plants were genotyped to quantify strain occupancy, and the Bradyrhizobium strain genome sequences were analyzed to uncover the genetic bases of interstrain competition outcomes. Strikingly, interstrain competition favored a fast-growing, minimally beneficial rhizobia strain. Host benefits were significantly diminished in coinoculation treatments relative to expectations from clonally inoculated controls, consistent with competitive interference among rhizobia that reduced both nodulation and plant growth. Competition traits appear polygenic, linked with inter-strain allelopathic interactions in the rhizosphere. This study confirms that competition among strains can destabilize mutualism by favoring microbes that are superior in colonizing host tissues but provide minimal benefits to host plants. Moreover, our findings help resolve the paradox that despite efficient host control post infection, legumes nonetheless encounter rhizobia that vary in their nitrogen fixation.


Assuntos
Bradyrhizobium , Fabaceae , Lotus , Rhizobium , Fixação de Nitrogênio , Genótipo , Bradyrhizobium/genética , Simbiose/genética , Nódulos Radiculares de Plantas
8.
Annu Rev Microbiol ; 77: 603-624, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37437216

RESUMO

Mobile genetic elements are key to the evolution of bacteria and traits that affect host and ecosystem health. Here, we use a framework of a hierarchical and modular system that scales from genes to populations to synthesize recent findings on mobile genetic elements (MGEs) of bacteria. Doing so highlights the role that emergent properties of flexibility, robustness, and genetic capacitance of MGEs have on the evolution of bacteria. Some of their traits can be stored, shared, and diversified across different MGEs, taxa of bacteria, and time. Collectively, these properties contribute to maintaining functionality against perturbations while allowing changes to accumulate in order to diversify and give rise to new traits. These properties of MGEs have long challenged our abilities to study them. Implementation of new technologies and strategies allows for MGEs to be analyzed in new and powerful ways.


Assuntos
Bactérias , Ecossistema , Bactérias/genética , Fenótipo , Sequências Repetitivas Dispersas
9.
Annu Rev Phytopathol ; 61: 1-23, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164023

RESUMO

Among plant-associated bacteria, agrobacteria occupy a special place. These bacteria are feared in the field as agricultural pathogens. They cause abnormal growth deformations and significant economic damage to a broad range of plant species. However, these bacteria are revered in the laboratory as models and tools. They are studied to discover and understand basic biological phenomena and used in fundamental plant research and biotechnology. Agrobacterial pathogenicity and capability for transformation are one and the same and rely on functions encoded largely on their oncogenic plasmids. Here, we synthesize a substantial body of elegant work that elucidated agrobacterial virulence mechanisms and described their ecology. We review findings in the context of the natural diversity that has been recently unveiled for agrobacteria and emphasize their genomics and plasmids. We also identify areas of research that can capitalize on recent findings to further transform our understanding of agrobacterial virulence and ecology.


Assuntos
Agrobacterium , Evolução Biológica , Virulência , Ecologia , Genômica
10.
Arch Microbiol ; 205(6): 244, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37209150

RESUMO

Streptomyces sp. RS2 was isolated from an unidentified sponge collected around Randayan Island, Indonesia. The genome of Streptomyces sp. RS2 consists of a linear chromosome of 9,391,717 base pairs with 71.9% of G + C content, 8270 protein-coding genes, as well as 18 rRNA and 85 tRNA loci. Twenty-eight putative secondary metabolites biosynthetic gene clusters (BGCs) were identified in the genome sequence. Nine of them have 100% similarity to BGCs for albaflavenone, α-lipomycin, coelibactin, coelichelin, ectoine, geosmin, germicidin, hopene, and lanthionine (SapB). The remaining 19 BGCs have low (< 50%) or moderate (50-80%) similarity to other known secondary metabolite BGCs. Biological activity assays of extracts from 21 different cultures of the RS2 strain showed that SCB ASW was the best medium for the production of antimicrobial and cytotoxic compounds. Streptomyces sp. RS2 has great potential to be a producer of novel secondary metabolites, particularly those with antimicrobial and antitumor activities.


Assuntos
Anti-Infecciosos , Antineoplásicos , Streptomyces , Genoma Bacteriano , Anti-Infecciosos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Metabolismo Secundário/genética , Família Multigênica
11.
J Bacteriol ; 205(4): e0000523, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36892285

RESUMO

Agrobacterium tumefaciens incites the formation of readily visible macroscopic structures known as crown galls on plant tissues that it infects. Records from biologists as early as the 17th century noted these unusual plant growths and began examining the basis for their formation. These studies eventually led to isolation of the infectious agent, A. tumefaciens, and decades of study revealed the remarkable mechanisms by which A. tumefaciens causes crown gall through stable horizontal genetic transfer to plants. This fundamental discovery generated a barrage of applications in the genetic manipulation of plants that is still under way. As a consequence of the intense study of A. tumefaciens and its role in plant disease, this pathogen was developed as a model for the study of critical processes that are shared by many bacteria, including host perception during pathogenesis, DNA transfer and toxin secretion, bacterial cell-cell communication, plasmid biology, and more recently, asymmetric cell biology and composite genome coordination and evolution. As such, studies of A. tumefaciens have had an outsized impact on diverse areas within microbiology and plant biology that extend far beyond its remarkable agricultural applications. In this review, we attempt to highlight the colorful history of A. tumefaciens as a study system, as well as current areas that are actively demonstrating its value and utility as a model microorganism.


Assuntos
Agrobacterium tumefaciens , Interações entre Hospedeiro e Microrganismos , Agrobacterium tumefaciens/genética , Tumores de Planta/microbiologia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Bactérias , Biologia
12.
Sci Adv ; 9(3): eadd1166, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662860

RESUMO

Although literature suggests that resistance to TNF inhibitor (TNFi) therapy in patients with ulcerative colitis (UC) is partially linked to immune cell populations in the inflamed region, there is still substantial uncertainty underlying the relevant spatial context. Here, we used the highly multiplexed immunofluorescence imaging technology CODEX to create a publicly browsable tissue atlas of inflammation in 42 tissue regions from 29 patients with UC and 5 healthy individuals. We analyzed 52 biomarkers on 1,710,973 spatially resolved single cells to determine cell types, cell-cell contacts, and cellular neighborhoods. We observed that cellular functional states are associated with cellular neighborhoods. We further observed that a subset of inflammatory cell types and cellular neighborhoods are present in patients with UC with TNFi treatment, potentially indicating resistant niches. Last, we explored applying convolutional neural networks (CNNs) to our dataset with respect to patient clinical variables. We note concerns and offer guidelines for reporting CNN-based predictions in similar datasets.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/complicações , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Inflamação/complicações , Biomarcadores
13.
Phytopathology ; 113(6): 975-984, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36515656

RESUMO

Globalization has made agricultural commodities more accessible, available, and affordable. However, their global movement increases the potential for invasion by pathogens and necessitates development and implementation of sensitive, rapid, and scalable surveillance methods. Here, we used 35 strains, isolated by multiple diagnostic laboratories, as a case study for using whole genome sequence data in a plant disease diagnostic setting. Twenty-seven of the strains were isolated in 2022 and identified as Xanthomonas hortorum pv. pelargonii. Eighteen of these strains originated from material sold by a plant breeding company that had notified clients following a release of infected geranium cuttings. Analyses of whole genome sequences revealed epidemiological links among the 27 strains from different growers that confirmed a common source of the outbreak and uncovered likely secondary spread events within facilities that housed plants originating from different plant breeding companies. Whole genome sequencing data were also analyzed to reveal how preparatory and analytical methods can impact conclusions on outbreaks of clonal pathogenic strains. The results demonstrate the potential power of using whole genome sequencing among a network of diagnostic labs and highlight how sharing such data can help shorten response times to mitigate outbreaks more expediently and precisely than standard methods.


Assuntos
Doenças das Plantas , Xanthomonas , Melhoramento Vegetal , Xanthomonas/fisiologia , Sequenciamento Completo do Genoma , Surtos de Doenças , Plantas/genética , Genoma Bacteriano/genética
14.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499104

RESUMO

The epithelial barrier's primary role is to protect against entry of foreign and pathogenic elements. Both COVID-19 and Inflammatory Bowel Disease (IBD) show commonalities in symptoms and treatment with sensitization of the epithelial barrier inviting an immune response. In this study we use a multi-omics strategy to identify a common signature of immune disease that may be able to predict for more severe patient outcomes. Global proteomic approaches were applied to transcriptome and proteome. Further semi- and relative- quantitative targeted mass spectrometry methods were developed to substantiate the proteomic and metabolomics changes in nasal swabs from healthy, COVID-19 (24 h and 3 weeks post infection); serums from Crohn's disease patients (scored for epithelial leak), terminal ileum tissue biopsies (patient matched inflamed and non-inflamed regions, and controls). We found that the tryptophan/kynurenine metabolism pathway is a 'hub' regulator of canonical and non-canonical transcription, macrophage release of cytokines and significant changes in the immune and metabolic status with increasing severity and disease course. Significantly modified pathways include stress response regulator EIF2 signaling (p = 1 × 10-3); energy metabolism, KYNU (p = 4 × 10-4), WARS (p = 1 × 10-7); inflammation, and IDO activity (p = 1 × 10-6). Heightened levels of PARP1, WARS and KYNU are predictive at the acute stage of infection for resilience, while in contrast, levels remained high and are predictive of persistent and more severe outcomes in COVID disease. Generation of a targeted marker profile showed these changes in immune disease underlay resolution of epithelial barrier function and have the potential to define disease trajectory and more severe patient outcomes.


Assuntos
COVID-19 , Doenças Inflamatórias Intestinais , Humanos , Triptofano/metabolismo , Proteômica , Doenças Inflamatórias Intestinais/metabolismo , Inflamação/genética , Inflamação/metabolismo , Transcriptoma
15.
J Gastroenterol Hepatol ; 37(11): 2173-2181, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36031345

RESUMO

BACKGROUND AND AIM: The exact place for selective internal radiation therapy (SIRT) in the therapeutic algorithm for hepatocellular carcinoma (HCC) is debated. There are limited data on its indications, efficacy, and safety in Australia. METHODS: We performed a multicenter retrospective cohort study of patients undergoing SIRT for HCC in all Sydney hospitals between 2005 and 2019. The primary outcome was overall survival. Secondary outcomes were progression-free survival and adverse events. RESULTS: During the study period, 156 patients underwent SIRT across 10 institutions (mean age 67 years, 81% male). SIRT use progressively increased from 2005 (n = 2), peaking in 2017 (n = 42) before declining (2019: n = 21). Barcelona Clinic Liver Cancer stages at treatment were A (13%), B (33%), C (52%), and D (2%). Forty-four (28%) patients had tumor thrombus. After a median follow-up of 13.9 months, there were 117 deaths. Median overall survival was 15 months (95% confidence interval 11-19). Independent predictors of mortality on multivariable analysis were extent of liver involvement, Barcelona Clinic Liver Cancer stage, baseline ascites, alpha fetoprotein, and model for end-stage liver disease score. Median progression-free survival was 6.0 months (95% confidence interval 5.1-6.9 months). Following SIRT, 11% of patients were downstaged to curative therapy. SIRT-related complications occurred in 17%: radioembolization-induced liver disease (11%), pneumonitis (3%), gastrointestinal ulceration, and cholecystitis (1% each). Baseline ascites predicted for radioembolization-induced liver disease. CONCLUSION: We present the largest Australian SIRT cohort for HCC. We have identified several factors associated with a poor outcome following SIRT. Patients with early-stage disease had the best survival with some being downstaged to curative therapy.


Assuntos
Carcinoma Hepatocelular , Doença Hepática Terminal , Neoplasias Hepáticas , Sirtuínas , Humanos , Masculino , Idoso , Feminino , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Radioisótopos de Ítrio , Estudos de Coortes , Estudos Retrospectivos , Ascite/tratamento farmacológico , Austrália/epidemiologia , Índice de Gravidade de Doença , Sirtuínas/uso terapêutico , Resultado do Tratamento
16.
Genome Biol Evol ; 14(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35639596

RESUMO

Acquisition of mobile genetic elements can confer novel traits to bacteria. Some integrative and conjugative elements confer upon members of Bradyrhizobium the capacity to fix nitrogen in symbiosis with legumes. These so-called symbiosis integrative conjugative elements (symICEs) can be extremely large and vary as monopartite and polypartite configurations within chromosomes of related strains. These features are predicted to impose fitness costs and have defied explanation. Here, we show that chromosome architecture is largely conserved despite diversity in genome composition, variations in locations of attachment sites recognized by integrases of symICEs, and differences in large-scale chromosomal changes that occur upon integration. Conversely, many simulated nonnative chromosome-symICE combinations are predicted to result in lethal deletions or disruptions to architecture. Findings suggest that there is compatibility between chromosomes and symICEs. We hypothesize that the size and structural flexibility of symICEs are important for generating combinations that maintain chromosome architecture across a genus of nitrogen-fixing bacteria with diverse and dynamic genomes.


Assuntos
Conjugação Genética , Simbiose , Cromossomos Bacterianos/genética , Elementos de DNA Transponíveis , Transferência Genética Horizontal , Genoma Bacteriano , Simbiose/genética
17.
mBio ; 13(3): e0007422, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35416699

RESUMO

Root nodulating rhizobia are nearly ubiquitous in soils and provide the critical service of nitrogen fixation to thousands of legume species, including staple crops. However, the magnitude of fixed nitrogen provided to hosts varies markedly among rhizobia strains, despite host legumes having mechanisms to selectively reward beneficial strains and to punish ones that do not fix sufficient nitrogen. Variation in the services of microbial mutualists is considered paradoxical given host mechanisms to select beneficial genotypes. Moreover, the recurrent evolution of non-fixing symbiont genotypes is predicted to destabilize symbiosis, but breakdown has rarely been observed. Here, we deconstructed hundreds of genome sequences from genotypically and phenotypically diverse Bradyrhizobium strains and revealed mechanisms that generate variation in symbiotic nitrogen fixation. We show that this trait is conferred by a modular system consisting of many extremely large integrative conjugative elements and few conjugative plasmids. Their transmissibility and propensity to reshuffle genes generate new combinations that lead to uncooperative genotypes and make individual partnerships unstable. We also demonstrate that these same properties extend beneficial associations to diverse host species and transfer symbiotic capacity among diverse strains. Hence, symbiotic nitrogen fixation is underpinned by modularity, which engenders flexibility, a feature that reconciles evolutionary robustness and instability. These results provide new insights into mechanisms driving the evolution of mobile genetic elements. Moreover, they yield a new predictive model on the evolution of rhizobial symbioses, one that informs on the health of organisms and ecosystems that are hosts to symbionts and that helps resolve the long-standing paradox. IMPORTANCE Genetic variation is fundamental to evolution yet is paradoxical in symbiosis. Symbionts exhibit extensive variation in the magnitude of services they provide despite hosts having mechanisms to select and increase the abundance of beneficial genotypes. Additionally, evolution of uncooperative symbiont genotypes is predicted to destabilize symbiosis, but breakdown has rarely been observed. We analyzed genome sequences of Bradyrhizobium, bacteria that in symbioses with legume hosts, fix nitrogen, a nutrient essential for ecosystems. We show that genes for symbiotic nitrogen fixation are within elements that can move between bacteria and reshuffle gene combinations that change host range and quality of symbiosis services. Consequently, nitrogen fixation is evolutionarily unstable for individual partnerships, but is evolutionarily stable for legume-Bradyrhizobium symbioses in general. We developed a holistic model of symbiosis evolution that reconciles robustness and instability of symbiosis and informs on applications of rhizobia in agricultural settings.


Assuntos
Bradyrhizobium , Fabaceae , Rhizobium , Bactérias/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Ecossistema , Fabaceae/microbiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio , Rhizobium/genética , Rhizobium/metabolismo , Simbiose/genética
18.
Mol Microbiol ; 117(5): 1023-1047, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35191101

RESUMO

Agrobacterium tumefaciens is a member of the Alphaproteobacteria that pathogenises plants and associates with biotic and abiotic surfaces via a single cellular pole. A. tumefaciens produces the unipolar polysaccharide (UPP) at the site of surface contact. UPP production is normally surface-contact inducible, but elevated levels of the second messenger cyclic diguanylate monophosphate (cdGMP) bypass this requirement. Multiple lines of evidence suggest that the UPP has a central polysaccharide component. Using an A. tumefaciens derivative with elevated cdGMP and mutationally disabled for other dispensable polysaccharides, a series of related genetic screens have identified a large number of genes involved in UPP biosynthesis, most of which are Wzx-Wzy-type polysaccharide biosynthetic components. Extensive analyses of UPP production in these mutants have revealed that the UPP is composed of two genetically, chemically, and spatially discrete forms of polysaccharide, and that each requires a specific Wzy-type polymerase. Other important biosynthetic, processing, and regulatory functions for UPP production are also revealed, some of which are common to both polysaccharides, and a subset of which are specific to each type. Many of the UPP genes identified are conserved among diverse rhizobia, whereas others are more lineage specific.


Assuntos
Agrobacterium tumefaciens , Vias Biossintéticas , Adesivos/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Regulação Bacteriana da Expressão Gênica/genética , Polissacarídeos Bacterianos/metabolismo
19.
BMC Biol ; 20(1): 16, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35022048

RESUMO

BACKGROUND: Many named species as defined in current bacterial taxonomy correspond to species complexes. Uncertainties regarding the organization of their genetic diversity challenge research efforts. We utilized the Agrobacterium tumefaciens species complex (a.k.a. Agrobacterium biovar 1), a taxon known for its phytopathogenicity and applications in transformation, as a study system and devised strategies for investigating genome diversity and evolution of species complexes. RESULTS: We utilized 35 genome assemblies, including 14 newly generated ones, to achieve a phylogenetically balanced sampling of A. tumefaciens. Our genomic analysis suggested that the 10 genomospecies described previously are distinct biological species and supported a quantitative guideline for species delineation. Furthermore, our inference of gene content and core-genome phylogeny allowed for investigations of genes critical in fitness and ecology. For the type VI secretion system (T6SS) involved in interbacterial competition and thought to be conserved, we detected multiple losses and one horizontal gene transfer. For the tumor-inducing plasmids (pTi) and pTi-encoded type IV secretion system (T4SS) that are essential for agrobacterial phytopathogenicity, we uncovered novel diversity and hypothesized their involvement in shaping this species complex. Intriguingly, for both T6SS and T4SS, genes encoding structural components are highly conserved, whereas extensive diversity exists for genes encoding effectors and other proteins. CONCLUSIONS: We demonstrate that the combination of a phylogeny-guided sampling scheme and an emphasis on high-quality assemblies provides a cost-effective approach for robust analysis in evolutionary genomics. We show that the T6SS VgrG proteins involved in specific effector binding and delivery can be classified into distinct types based on domain organization. The co-occurrence patterns of VgrG-associated domains and the neighboring genes that encode different chaperones/effectors can be used to infer possible interacting partners. Similarly, the associations between plant host preference and the pTi type among these strains can be used to infer phenotype-genotype correspondence. Our strategies for multi-level investigations at scales that range from whole genomes to intragenic domains and phylogenetic depths from between- to within-species are applicable to other bacteria. Furthermore, modularity observed in the molecular evolution of genes and domains is useful for inferring functional constraints and informing experimental works.


Assuntos
Bactérias , Proteínas de Bactérias , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Filogenia , Plasmídeos/genética , Virulência
20.
Artigo em Inglês | MEDLINE | ID: mdl-35085064

RESUMO

Fourteen strains of Streptomyces isolated from scab lesions on potato are described as members of a novel species based on genetic distance, morphological observation and biochemical analyses. Morphological and biochemical characteristics of these strains are distinct from other described phytopathogenic species. Strain NE06-02DT has white aerial mycelium and grey, cylindrical, smooth spores on rectus-flexibilis spore chains. Members of this species group can utilize most of the International Streptomyces Project sugars, utilize melibiose and trehalose, produce melanin, grow on 6-7 % NaCl and pH 5-5.5 media, and are susceptible to oleandomycin (100 µg ml-1), streptomycin (20 µg ml-1) and penicillin G (30 µg ml-1). Though the 16S rRNA gene sequences from several members of this novel species are identical to the Streptomyces bottropensis 16S rRNA gene sequence, whole-genome average nucleotide identity and multi-locus sequence analysis confirm that the strains are members of a novel species. Strains belonging to this novel species have been isolated from the United States, Egypt and China with the earliest known members being isolated in 1961 from common scab lesions of potato in both California, USA, and Maine, USA. The name Streptomyces caniscabiei sp. nov. is proposed for strain NE06-02DT (=DSM111602T=ATCC TSD-236T) and the other members of this novel species group.


Assuntos
Filogenia , Doenças das Plantas/microbiologia , Solanum tuberosum , Streptomyces , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solanum tuberosum/microbiologia , Streptomyces/classificação , Streptomyces/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA