Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 56(5): 767-778, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28029785

RESUMO

Complex double-stranded DNA viruses utilize a terminase enzyme to package their genomes into a preassembled procapsid shell. DNA packaging triggers a major conformational change in the proteins assembled into the shell and most often subsequent addition of a decoration protein that is required to stabilize the structure. In bacteriophage λ, DNA packaging drives a procapsid expansion transition to afford a larger but fragile shell. The gpD decoration protein adds to the expanded shell as trimeric spikes at each of the 140 three-fold axes. The spikes provide mechanical strength to the shell such that it can withstand the tremendous internal forces generated by the packaged DNA in addition to environmental insults. Hydrophobic, electrostatic, and aromatic-proline noncovalent interactions have been proposed to mediate gpD trimer spike assembly at the expanded shell surface. Here, we directly examine each of these interactions and demonstrate that hydrophobic interactions play the dominant role. In the course of this study, we unexpectedly found that Trp308 in the λ major capsid protein (gpE) plays a critical role in shell assembly. The gpE-W308A mutation affords a soluble, natively folded protein that does not further assemble into a procapsid shell, despite the fact that it retains binding interactions with the scaffolding protein, the shell assembly chaparone protein. The data support a model in which the λ procapsid shell assembles via cooperative interaction of monomeric capsid proteins, as observed in the herpesviruses and phages such as P22. The significance of the results with respect to capsid assembly, maturation, and stability is discussed.


Assuntos
Bacteriófago lambda/química , Proteínas do Capsídeo/química , DNA Viral/química , Glicoproteínas/química , Precursores de Proteínas/química , Montagem de Vírus/genética , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Bacteriófago lambda/ultraestrutura , Fenômenos Biomecânicos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Empacotamento do DNA , DNA Viral/genética , DNA Viral/metabolismo , Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutação , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estrutura Secundária de Proteína , Eletricidade Estática
2.
Biomacromolecules ; 15(12): 4410-9, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25319793

RESUMO

Nanoparticle technologies provide a powerful tool for the development of reagents for use in both therapeutic and diagnostic, or "theragnostic" biomedical applications. Two broad classes of particles are under development, viral and synthetic systems, each with their respective strengths and limitations. Here we adapt the phage lambda system to construct modular "designer" nanoparticles that blend these two approaches. We have constructed a variety of modified "decoration" proteins that allow site-specific modification of the shell with both protein and nonproteinaceous ligands including small molecules, carbohydrates, and synthetic display ligands. We show that the chimeric proteins can be used to simultaneously decorate the shell in a tunable surface density to afford particles that are physically homogeneous and that can be manufactured to display a variety of ligands in a defined composition. These designer nanoparticles set the stage for development of lambda as a theragnostic nanoparticle system.


Assuntos
Bacteriófago lambda/química , Proteínas do Capsídeo/química , Capsídeo/química , Glicoproteínas/química , Nanopartículas/química , Nanopartículas/virologia , DNA Viral/química , Ligantes , Plasmídeos/genética
3.
Virology ; 434(2): 242-50, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22980502

RESUMO

80α is a temperate, double-stranded DNA bacteriophage of Staphylococcus aureus that can act as a "helper" for the mobilization of S. aureus pathogenicity islands (SaPIs), including SaPI1. When SaPI1 is mobilized by 80α, the SaPI genomes are packaged into capsids that are composed of phage proteins, but that are smaller than those normally formed by the phage. This size determination is dependent on SaPI1 proteins CpmA and CpmB. Here, we show that co-expression of the 80α capsid and scaffolding proteins in S. aureus, but not in E. coli, leads to the formation of procapsid-related structures, suggesting that a host co-factor is required for assembly. The capsid and scaffolding proteins also undergo normal N-terminal processing upon expression in S. aureus, implicating a host protease. We also find that SaPI1 proteins CpmA and CpmB promote the formation of small capsids upon co-expression with 80α capsid and scaffolding proteins in S. aureus.


Assuntos
Genética Microbiana/métodos , Biologia Molecular/métodos , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/virologia , Virologia/métodos , Montagem de Vírus , Proteínas de Bactérias/metabolismo , Capsídeo/metabolismo , Escherichia coli/genética , Expressão Gênica , Ilhas Genômicas , Humanos , Multimerização Proteica , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética
4.
Biochemistry ; 51(1): 391-400, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22191393

RESUMO

The assembly of complex double-stranded DNA viruses includes a genome packaging step where viral DNA is translocated into the confines of a preformed procapsid shell. In most cases, the preferred packaging substrate is a linear concatemer of viral genomes linked head-to-tail. Viral terminase enzymes are responsible for both excision of an individual genome from the concatemer (DNA maturation) and translocation of the duplex into the capsid (DNA packaging). Bacteriophage λ terminase site-specifically nicks viral DNA at the cos site in a concatemer and then physically separates the nicked, annealed strands to mature the genome in preparation for packaging. Here we present biochemical studies on the so-called helicase activity of λ terminase. Previous studies reported that ATP is required for strand separation, and it has been presumed that ATP hydrolysis is required to drive the reaction. We show that ADP and nonhydrolyzable ATP analogues also support strand separation at low (micromolar) concentrations. In addition, the Escherichia coli integration host factor protein (IHF) strongly stimulates the reaction in a nucleotide-independent manner. Finally, we show that elevated concentrations of nucleotide inhibit both ATP- and IHF-stimulated strand separation by λ terminase. We present a model where nucleotide and IHF interact with the large terminase subunit and viral DNA, respectively, to engender a site-specifically bound, catalytically competent genome maturation complex. In contrast, binding of nucleotide to the low-affinity ATP binding site in the small terminase subunit mediates a conformational switch that down-regulates maturation activities and activates the DNA packaging activity of the enzyme. This affords a motor complex that binds tightly, but nonspecifically, to DNA as it translocates the duplex into the capsid shell. These studies have yielded mechanistic insight into the assembly of the maturation complex on viral DNA and its transition to a mobile packaging motor that may be common to all of the complex double-stranded DNA viruses.


Assuntos
Bacteriófago lambda/enzimologia , DNA Helicases/química , DNA Viral/química , Genoma Viral , Proteínas Motores Moleculares/química , Montagem de Vírus/genética , Adenoviridae/enzimologia , Adenoviridae/genética , Fagos Bacilares/enzimologia , Fagos Bacilares/genética , Bacteriófago lambda/genética , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , DNA Viral/genética , Metabolismo Energético/genética , Modelos Moleculares , Proteínas Motores Moleculares/genética
5.
J Mol Biol ; 412(4): 710-22, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21821042

RESUMO

Staphylococcus aureus pathogenicity island 1 (SaPI1) is a mobile genetic element that carries genes for several superantigen toxins. SaPI1 is normally stably integrated into the host genome but can become mobilized by "helper" bacteriophage 80α, leading to the packaging of SaPI1 genomes into phage-like transducing particles that are composed of structural proteins supplied by the helper phage but having smaller capsids. We show that the SaPI1-encoded protein gp6 is necessary for efficient formation of small capsids. The NMR structure of gp6 reveals a dimeric protein with a helix-loop-helix motif similar to that of bacteriophage scaffolding proteins. The gp6 dimer matches internal densities that bridge capsid subunits in cryo-electron microscopy reconstructions of SaPI1 procapsids, suggesting that gp6 acts as an internal scaffolding protein in capsid size determination.


Assuntos
Proteínas do Capsídeo/fisiologia , Capsídeo/fisiologia , Tamanho das Organelas/genética , Sequência de Aminoácidos , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Simulação por Computador , Ilhas Genômicas/genética , Modelos Biológicos , Modelos Moleculares , Organismos Geneticamente Modificados , Dobramento de Proteína , Multimerização Proteica/genética , Multimerização Proteica/fisiologia , Estrutura Quaternária de Proteína , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia , Staphylococcus aureus/ultraestrutura , Montagem de Vírus/genética
6.
J Mol Biol ; 405(3): 863-76, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21129380

RESUMO

Bacteriophages are involved in many aspects of the spread and establishment of virulence factors in Staphylococcus aureus, including the mobilization of genetic elements known as S. aureus pathogenicity islands (SaPIs), which carry genes for superantigen toxins and other virulence factors. SaPIs are packaged into phage-like transducing particles using proteins supplied by the helper phage. We have used cryo-electron microscopy and icosahedral reconstruction to determine the structures of the procapsid and the mature capsid of 80α, a bacteriophage that can mobilize several different SaPIs. The 80α capsid has T=7 icosahedral symmetry with the capsid protein organized into pentameric and hexameric clusters that interact via prominent trimeric densities. The 80α capsid protein was modeled based on the capsid protein fold of bacteriophage HK97 and fitted into the 80α reconstructions. The models show that the trivalent interactions are mediated primarily by a 22-residue ß hairpin structure called the P loop that is not found in HK97. Capsid expansion is associated with a conformational switch in the spine helix that is propagated throughout the subunit, unlike the domain rotation mechanism in phage HK97 or P22.


Assuntos
Bacteriófagos/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Capsídeo/ultraestrutura , Staphylococcus aureus/virologia , Sequência de Aminoácidos , Bacteriófagos/crescimento & desenvolvimento , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Ilhas Genômicas , Dados de Sequência Molecular , Conformação Proteica , Staphylococcus aureus/patogenicidade
7.
Virus Genes ; 40(2): 298-306, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20063181

RESUMO

Most tailed bacteriophages with double-stranded DNA genomes code for a scaffolding protein, which is required for capsid assembly, but is removed during capsid maturation and DNA packaging. The gpO scaffolding protein of bacteriophage P2 also doubles as a maturation protease, while the scaffolding activity is confined to a 90 residue C-terminal "scaffolding" domain. Bacteriophage HK97 lacks a separate scaffolding protein; instead, an N-terminal "delta" domain in the capsid protein appears to serve an analogous role. We asked whether the C-terminal scaffolding domain of gpO could work as a delta domain when fused to the gpN capsid protein. Varying lengths of C-terminal sequences from gpO were fused to the N-terminus of gpN and expressed in E. coli. The presence of just the 41 C-terminal residues of gpO increased the fidelity of assembly and promoted the formation of closed shells, but the shells formed were predominantly small, 40 nm shells, compared to the normal, 55 nm P2 procapsid shells. Larger scaffolding domains fused to gpN caused the formation of shells of varying size and shape. The results suggest that while fusing the scaffolding protein to the capsid protein assists in shell closure, it also restricts the conformational variability of the capsid protein.


Assuntos
Bacteriófago P2/fisiologia , Proteínas do Capsídeo/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Bacteriófago P2/genética , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Escherichia coli/virologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/genética , Vírion/metabolismo , Vírion/ultraestrutura
8.
Virology ; 384(1): 144-50, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19064277

RESUMO

Bacteriophage P2 encodes a scaffolding protein, gpO, which is required for correct assembly of P2 procapsids from the gpN major capsid protein. The 284 residue gpO protein also acts as a protease, cleaving itself into an N-terminal fragment, O, that remains in the capsid following maturation. In addition, gpO is presumed to act as the maturation protease for gpN, which is N-terminally processed to N, accompanied by DNA packaging and capsid expansion. The protease activity of gpO resides in the N-terminal half of the protein. We show that gpO is a classical serine protease, with a catalytic triad comprised of Asp 19, His 48 and Ser 107. The C-terminal 90 amino acids of gpO are required and sufficient for capsid assembly. This fragment contains a predicted alpha-helical segment between residues 197 and 257 and exists as a multimer in solution, suggesting that oligomerization is required for scaffolding activity. Correct assembly requires the C-terminal cysteine residue, which is most likely involved in transient gpN interactions. Our results suggest a model for gpO scaffolding action in which the N-terminal half of gpO binds strongly to gpN, while oligomerization of the C-terminal alpha-helical domain of gpO and transient interactions between Cys 284 and gpN lead to capsid assembly.


Assuntos
Bacteriófago P2/metabolismo , Proteínas do Capsídeo/metabolismo , Peptídeo Hidrolases/metabolismo , Serina Endopeptidases/metabolismo , Proteínas Estruturais Virais/metabolismo , Bacteriófago P2/enzimologia , Bacteriófago P2/genética , Capsídeo , Proteínas do Capsídeo/genética , Cromatografia em Gel , DNA Viral/genética , Regulação Viral da Expressão Gênica , Peso Molecular , RNA de Cadeia Dupla/genética , Serina Endopeptidases/genética , Proteínas Estruturais Virais/genética
9.
J Mol Biol ; 380(3): 465-75, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18565341

RESUMO

The Staphylococcus aureus pathogenicity island SaPI1 carries the gene for the toxic shock syndrome toxin (TSST-1) and can be mobilized by infection with S. aureus helper phage 80alpha. SaPI1 depends on the helper phage for excision, replication and genome packaging. The SaPI1-transducing particles comprise proteins encoded by the helper phage, but have a smaller capsid commensurate with the smaller size of the SaPI1 genome. Previous studies identified only 80alpha-encoded proteins in mature SaPI1 virions, implying that the presumptive SaPI1 capsid size determination function(s) must act transiently during capsid assembly or maturation. In this study, 80alpha and SaPI1 procapsids were produced by induction of phage mutants lacking functional 80alpha or SaPI1 small terminase subunits. By cryo-electron microscopy, these procapsids were found to have a round shape and an internal scaffolding core. Mass spectrometry was used to identify all 80alpha-encoded structural proteins in 80alpha and SaPI1 procapsids, including several that had not previously been found in the mature capsids. In addition, SaPI1 procapsids contained at least one SaPI1-encoded protein that has been implicated genetically in capsid size determination. Mass spectrometry on full-length phage proteins showed that the major capsid protein and the scaffolding protein are N-terminally processed in both 80alpha and SaPI1 procapsids.


Assuntos
Capsídeo/metabolismo , Ilhas Genômicas , Fagos de Staphylococcus/química , Staphylococcus aureus/virologia , Proteínas Estruturais Virais/metabolismo , Capsídeo/ultraestrutura , Vírus Auxiliares/química , Espectrometria de Massas , Peso Molecular , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/ultraestrutura , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética
10.
Virology ; 370(2): 352-61, 2008 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-17931675

RESUMO

Scaffolding proteins act as chaperones for the assembly of numerous viruses, including most double-stranded DNA bacteriophages. In bacteriophage P2, an internal scaffolding protein, gpO, is required for the assembly of correctly formed viral capsids. Bacteriophage P4 is a satellite phage that has acquired the ability to take control of the P2 genome and use the P2 capsid protein gpN to assemble a capsid that is smaller than the normal P2 capsid. This size determination is dependent on the P4 external scaffolding protein Sid. Although Sid is sufficient to form morphologically correct P4-size capsids, the P2 internal scaffolding protein gpO is required for the formation of viable capsids of both P2 and P4. In most bacteriophages, the scaffolding protein is either proteolytically degraded or exits intact from the capsid after assembly. In the P2/P4 system, however, gpO is cleaved to an N-terminal fragment, O(*), that remains inside the mature capsid after DNA packaging. We previously showed that gpO exhibits autoproteolytic activity, which is abolished by removal of the first 25 amino acids. Co-expression of gpN with this N-terminally truncated version of gpO leads to the production of immature P2 procapsid shells. Here, we use protein analysis and mass spectroscopy to show that P2 and P4 virions as well as procapsids isolated from viral infections contain O(*) and that cleavage occurs between residues 141 and 142 of gpO. By co-expression of gpN with truncated gpO proteins, we show that O(*) binds to gpN and retains the proteolytic activity of gpO and that the C-terminal 90 residues of gpO (residues 195-284) are sufficient to promote the formation of P2-size procapsids. Using mass spectrometry, we have also identified the head completion protein gpL in the virions.


Assuntos
Bacteriófago P2/fisiologia , Colífagos/fisiologia , Proteínas Estruturais Virais/metabolismo , Sequência de Aminoácidos , Bacteriófago P2/genética , Bacteriófago P2/ultraestrutura , Colífagos/genética , Colífagos/ultraestrutura , Escherichia coli/virologia , Expressão Gênica , Genes Virais , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Peso Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Montagem de Vírus
11.
Virology ; 348(1): 133-40, 2006 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-16457867

RESUMO

Assembly of the E. coli bacteriophage P2 into an icosahedral capsid with T = 7 symmetry is dependent on the gpN capsid protein, the gpQ connector protein and the gpO internal scaffolding protein. In the presence of the P4-encoded protein Sid, the same proteins are assembled into a smaller capsid with T = 4 symmetry. Although gpO has long been expected to act as an internal scaffolding protein, it has not been possible to produce P2 procapsids efficiently in vitro or in vivo due to a failure to express gpO at high levels. In this study, we find that full-length gpO undergoes proteolytic degradation within 1 h of induction of expression. However, a truncated version of gpO lacking the N-terminal 25 amino acids (Odelta25) is stably expressed at high levels and is able to direct the formation of P2 size procapsids. In the presence of Sid, Odelta25 is incorporated into P4 procapsids, showing that Sid overrides the effect of gpO on capsid size determination.


Assuntos
Bacteriófago P2/fisiologia , Proteínas do Capsídeo/fisiologia , Escherichia coli/virologia , Montagem de Vírus/fisiologia , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Eletroforese em Gel de Poliacrilamida , Microscopia Eletrônica de Transmissão , Deleção de Sequência , Proteínas Virais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA