Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Colloid Interface Sci ; 671: 529-542, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38815388

RESUMO

Energy consumption from air cooling systems in summer, water scarcity in hot regions, and the functional reusability of waste paper are emerging environmental problems. Finding solutions to these problems simultaneously remains a significant challenge. Herein, a superhydrophobic passive cooling Cellulose-CaCO3 film with hierarchical nano-sheets was fabricated to realize daytime radiative cooling with a temperature drop of 15-20 °C in summer and water harvesting with harvesting efficiency of 387 mg cm-2h-1 bd utilization of recycled waste paper. The superhydrophobic Cellulose-CaCO3 film demonstrates its self-cleaning properties against inorganic and organic pollutants. Furthermore, the superhydrophobicity of the film was maintained after base/acid corrosions, dynamic water flushing, and thermal treatment at 100 °C for 7 h, exhibiting good durability of the superhydrophobicity. Moreover, the superhydrophobic Cellulose-CaCO3 film is nonflammable after exposure to fire combustion for 1 min. In addition to waste paper, waste maize straws, and pasteboards were also collected to produce superhydrophobic passive cooling films. Results indicate that the above three cellulose-based raw materials can be well used to prepare durable superhydrophobic passive cooling materials. Environmental toxicology assessments confirm the safety of the material. This study not only provides a protocol for preparing superhydrophobic materials; but also demonstrates their potential for passive cooling and water harvesting.

2.
Environ Res ; 252(Pt 2): 118892, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599451

RESUMO

Developing cobalt-based catalysts with a high abundance of oxygen vacancies (Vo) and exceptional Vo utility efficiency for the prompt removal of stubborn contaminants through peroxymonosulfate (PMS) activation poses a significant challenge. Herein, we reported the synthesis of the reduced Mg-doped Co3O4 nanosheets, i.e. Mg-doped Co3O4-r, via Mg doping and followed by NaBH4 reduction, aiming to degrade tetracycline (TC). Various characterization results illustrated that NaBH4 reduction imparted higher Vo utility efficiency to Mg-doped Co3O4-r, along with an ample presence of reduced Co2+ species and an increased surface area, thereby substantially elevating PMS activation capability. Notably, Mg-doped Co3O4-r achieved more than 97.9% degradation of 20 mg/L TC within 10 min, showing an over 8-fold increase in reaction rate relative to the Mg-doped Co3O4 (kobs: 0.3285 min-1 vs 0.0399 min-1). The high removal efficiency of TC was sustained across a broad pH range of 3-11, even in the presence of common anions and humic acid. Radical quenching trials, EPR outcomes, and electrochemical analysis indicated that neither radicals nor 1O2 were the primary active species. Instead, electron transfer pathway played a dominant role in TC degradation. The Mg-doped Co3O4-r displayed excellent recyclability and versatility. Even after the fifth cycle, it maintained an impressive 83.0% removal of TC. Furthermore, it exhibited rapid degradation capabilities for various pollutants, including levofloxacin, pefloxacin, ciprofloxacin, malachite green, and rhodamine B. The TC degradation pathway was proposed based on LC-MS determination of its degradation intermediates. This study showcases an innovative strategy for the rational design of an efficient cobalt-based activator, leveraging electron transfer pathways through PMS activation to degrade antibiotics effectively.


Assuntos
Cobalto , Óxidos , Peróxidos , Tetraciclina , Cobalto/química , Tetraciclina/química , Peróxidos/química , Cinética , Óxidos/química , Oxigênio/química , Poluentes Químicos da Água/química , Antibacterianos/química , Transporte de Elétrons , Oxirredução
3.
Chemosphere ; 352: 141506, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395367

RESUMO

Soil samples were collected in at different depths from the conflagration area in Liangshan Yi Autonomous Region, China, to investigate the distribution characteristics and ecological and human health risks of heavy metals after a wildfire. The samples collected comprise wildfire ash (WA) above the soil surface, ash soil (AS) 0-5 cm, and plain soil (PS) 5-15 cm below the soil surface. Additionally, reference soil (RS) was collected from a nearby unburned area at the same latitude as the conflagration area. The results showed that the concentrations of zinc (Zn), copper (Cu), lead (Pb), and cadmium (Cd) in the WA and AS were significantly higher than in reference soil (RS) (p < 0.05). Concentrations of Pb in the PS were 2.52 times higher than that in RS (17.9 mg kg-1) (p < 0.05). The AS and WA had the highest Index of potential ecological risks (RI > 600). In addition, The Cd in AS and WA contributed the most to the highest Improved nemerow index (INI) and RI with a contribution of more than 80%. The concentration of heavy metals was used to establish non-carcinogenic effects and cancer risks in humans via three exposure pathways: accident ingestion of soil, dermal contact with soil, and inhalation of soil particles. Hazard index (HI) values of each sample were all less than 1, indicating the non-carcinogenic risk was within the acceptable range and would not adversely affect the local population's health. The Cancer risk (CR) values of Cr, As, Cd, and Ni were all below 1 × 10-6, indicating that heavy metal pollution from this wildfire did not pose a cancer risk to residents.


Assuntos
Metais Pesados , Neoplasias , Poluentes do Solo , Incêndios Florestais , Humanos , Solo , Monitoramento Ambiental , Cádmio , Chumbo , Medição de Risco , Poluentes do Solo/análise , Metais Pesados/análise , China
4.
Huan Jing Ke Xue ; 44(6): 3237-3246, 2023 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-37309942

RESUMO

Groundwater pollution risk assessment is an effective method to manage groundwater resources and prevent groundwater pollution. The DRSTIW model was used to evaluate the groundwater vulnerability in a plain area of the Yarkant River Basin, and factor analysis was used to identify pollution sources for pollution loading evaluation. The functional value of groundwater was estimated by considering both the mining value and the in-situ value. The entropy weight method and the analytic hierarchy process (AHP) were used to determine the comprehensive weight, and a groundwater pollution risk map was generated based on the overlay function of ArcGIS software. The results showed that the natural geological factors such as large groundwater recharge modulus, wide recharge sources, strong permeability of soil surface and unsaturated zone, and shallow groundwater depth facilitated pollutant migration and enrichment, resulting in a higher overall groundwater vulnerability. Very high vulnerability and high vulnerability areas were mainly distributed in Zepu County, Shache County, Maigaiti County, Tumushuke City, and the eastern part of Bachu County. The pollution loading of groundwater was generally low, the main pollution sources were point source pollution caused by water-rock interaction, non-point source pollution caused by pesticides and fertilizers, and point source pollution caused by industry and life. The overall functional value of groundwater was low because of human economic activities, fine water quality, and good habitat quality. Groundwater pollution risk was generally low, and very high and high pollution risk areas accounted for 20.7% of the study area, mainly distributed in Shache County, Zepu County, Maigaiti County, Tumushuke City, and the western part of Bachu County. Natural conditions such as strong aquifer permeability, weak groundwater runoff conditions, large groundwater recharge modulus, low vegetation coverage, and strong water-rock interaction, coupled with frequent human activities such as application of agricultural fertilizers and discharge of industrial and domestic sewage, made the groundwater pollution risk higher in these areas. Groundwater pollution risk assessment provided strong data support for the optimization of the groundwater monitoring network and the prevention of groundwater pollution.

5.
ACS Appl Mater Interfaces ; 15(15): 19761-19772, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37022321

RESUMO

Oily water purification, immiscible solvent separation, sensitive microreaction, and CO2 blockage are of great interest because of their importance for the environment and demands of controllable microreactions. However, one specific material that can meet all the requirements has yet to be reported. Herein, we developed a simple environment-benign method to prepare specific dual superlyophobic materials to solve the problems mentioned earlier. The dual superlyophobic materials can maintain their dual superoleophobicity in various oil/water systems, and no additional surface modifications were required when the oil/water system was changed. Moreover, the materials can be used to separate oil/water mixtures with separation efficiencies greater than 99.50% even after 40 separation cycles and separate immiscible organic solvents with efficiencies over than 99.25% after 20 cycles. Separations of meal waste oily water at 60 °C and crude oil/water were also successfully performed. The materials can be further applied to manipulate and block CO2 bubbles under liquid. The materials can also act as a platform for microdrop manipulation/microreaction under liquid.

6.
Environ Res ; 229: 115994, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105283

RESUMO

Conventional perovskite oxides (ABO3) tend to suffer from their inactive surfaces and limited active sites that reduce their catalytic activity and stability, while interface engineering is a facile modulating technique to boost the catalyst's inherent activity by constructing heterogeneous interfaces. In this study, perovskite/spinel LaCoO3/Co3O4 nanocomposites with heterogeneous interfaces were synthesized via sol-gel and in-situ gradient etching methods to activate peroxymonosulfate (PMS) for degrading levofloxacin (LEV). LaCoO3 on the surface was etched into spinel Co3O4, and LaCoO3/Co3O4 nanocomposites with two crystal structures of perovskite and spinel were successfully formed. The surface-modified LaCoO3/Co3O4 exhibited superior catalytic performance with a reaction rate constant more than 2 times that of the original LaCoO3, as well as excellent pH adaptability (3-11) and reusability (more than 6 recyclings) for LEV degradation. Besides, multiple characterization techniques were carried out to find that LaCoO3/Co3O4 possessed a larger specific surface area and richer oxygen vacancies after surface modification, which provided more active sites and accelerated mass transfer rate. The mechanism of reactive oxygen species involved in the reaction system was proposed that LaCoO3/Co3O4 not only reacted with PMS directly to produce SO4•- and •OH but also its surface hydroxyl group helped to form the [≡Co(Ⅲ)OOSO3]+ reactive complex with PMS to produce O2•- and 1O2. In addition, electrochemical experiments demonstrated that the surface electronic structure of LaCoO3/Co3O4 was effectively regulated, exhibiting a faster electron transfer rate and facilitating the redox process. By detecting and identifying degradation intermediates, three degradation pathways for LEV were proposed. Our work provided profound insights into the design of efficient and long-lasting catalysts for advanced oxidation processes.


Assuntos
Levofloxacino , Nanocompostos , Óxidos , Oxigênio
7.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903133

RESUMO

The pouring time interval is the decisive factor of dual-liquid casting for bimetallic productions. Traditionally, the pouring time interval is fully determined by the operator's experience and on-site observation. Thus, the quality of bimetallic castings is unstable. In this work, the pouring time interval of dual-liquid casting for producing low alloy steel/high chromium cast iron (LAS/HCCI) bimetallic hammerheads is optimized via theoretical simulation and experimental verification. The relevancies of interfacial width and bonding strength to pouring time interval are, respectively, established. The results of bonding stress and interfacial microstructure indicate that 40 s is the optimum pouring time interval. The effects of interfacial protective agent on interfacial strength-toughness are also investigated. The addition of the interfacial protective agent yields an increase of 41.5% in interfacial bonding strength and 15.6% in toughness. The optimum dual-liquid casting process is used to produce LAS/HCCI bimetallic hammerheads. Samples cut from these hammerheads show excellent strength-toughness (1188 Mpa for bonding strength and 17 J/cm2 for toughness). The findings could be a reference for dual-liquid casting technology. They are also helpful for understanding the formation theory of the bimetal interface.

8.
Tree Physiol ; 43(6): 965-978, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-36864631

RESUMO

Many studies have investigated the photoprotective and photosynthetic capacity of plant leaves, but few have simultaneously evaluated the dynamic changes of photoprotective capacity and photosynthetic maturation of leaves at different developmental stages. As a result, the process between the decline of photoprotective substances and the onset of photosynthetic maturation during plant leaf development are still poorly understood, and the relationship between them has not been quantitatively described. In this study, the contents of photoprotective substances, photosynthetic pigment content and photosynthetic capacity of leaves at different developmental stages from young leaves to mature leaves were determined by spatio-temporal replacement in eight dominant tree species in subtropical evergreen broadleaved forests. The correlation analysis found that the data sets of anthocyanins, flavonoids, total phenolics and total antioxidant capacity were mainly distributed on one side of the symmetry axis (y = x), while the data sets of flavonoids, total phenolics and total antioxidant capacity were mainly distributed on both sides of the symmetry axis (y = x). In addition, the content of photoprotective substances in plant leaves was significantly negatively correlated with photosynthetic pigment content and photosynthetic capacity but was significantly positively correlated with dark respiration rate (Rd). When chlorophyll accumulated to ~50% of the final value, the photoprotective substance content and Rd of plant leaves reached the lowest level, and anthocyanins disappeared completely; in contrast, the photosynthetic capacity reached the highest level. Our results suggest that anthocyanins mainly play a light-shielding role in the young leaves of most plants in subtropical forests. In addition, 50% chlorophyll accumulation in most plant leaves was the basis for judging leaf photosynthetic maturity. We also believe that 50% chlorophyll accumulation is a critical period in the transition of plant leaves from high photoprotective capacity (high metabolic capacity, low photosynthetic capacity) to low photoprotective capacity (low metabolic capacity, high photosynthetic capacity).


Assuntos
Antocianinas , Árvores , Árvores/metabolismo , Antocianinas/metabolismo , Antioxidantes/metabolismo , Fotossíntese , Florestas , Clorofila/metabolismo , Folhas de Planta
9.
Plant Cell ; 34(10): 3899-3914, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35775944

RESUMO

In eukaryotes, the STRUCTURAL MAINTENANCE OF CHROMOSOME 5/6 (SMC5/6) complex is critical to maintaining chromosomal structures around double-strand breaks (DSBs) in DNA damage repair. However, the recruitment mechanism of this conserved complex at DSBs remains unclear. In this study, using Arabidopsis thaliana as a model, we found that SMC5/6 localization at DSBs is dependent on the protein scaffold containing INVOLVED IN DE NOVO 2 (IDN2), CELL DIVISION CYCLE 5 (CDC5), and ALTERATION/DEFICIENCY IN ACTIVATION 2B (ADA2b), whose recruitment is further mediated by DNA-damage-induced RNAs (diRNAs) generated from DNA regions around DSBs. The physical interactions of protein components including SMC5-ADA2b, ADA2b-CDC5, and CDC5-IDN2 result in formation of the protein scaffold. Further analysis indicated that the DSB localization of IDN2 requires its RNA-binding activity and ARGONAUTE 2 (AGO2), indicating a role for the AGO2-diRNA complex in this process. Given that most of the components in the scaffold are conserved, the mechanism presented here, which connects SMC5/6 recruitment and small RNAs, will improve our understanding of DNA repair mechanisms in eukaryotes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA/genética , DNA de Plantas/metabolismo , RNA/genética , Fatores de Transcrição/metabolismo
10.
Front Cell Dev Biol ; 9: 740267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497810

RESUMO

Thyroid cancer ranks second in the incidence rate of endocrine malignant cancer. Thyroid cancer is usually asymptomatic at the initial stage, which makes patients easily miss the early treatment time. Combining genetic testing with imaging can greatly improve the diagnostic efficiency of thyroid cancer. Researchers have discovered many genes related to thyroid cancer. However, the effects of these genes on thyroid cancer are different. We hypothesize that there is a stronger interaction between the core genes that cause thyroid cancer. Based on this hypothesis, we constructed an interaction network of thyroid cancer-related genes. We traversed the network through random walks, and sorted thyroid cancer-related genes through ADNN which is fusion of Adaboost and deep neural network (DNN). In addition, we discovered more thyroid cancer-related genes by ADNN. In order to verify the accuracy of ADNN, we conducted a fivefold cross-validation. ADNN achieved AUC of 0.85 and AUPR of 0.81, which are more accurate than other methods.

11.
Plant Physiol Biochem ; 166: 258-269, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34126593

RESUMO

Photoprotection strategies that have evolved in plants to cope with high light (HL) stress provide plants with the ability to resist HL. However, it has not been clearly confirmed which photoprotection strategy is the major HL resistance mechanism. To reveal the major photoprotection mechanism against short-term high light (STHL), the physiological and biochemical responses of three Arabidopsis mutants (Col, chi and ans) under STHL were analyzed in this study. After STHL treatment, the most serious photosynthetic pigment damage was observed in chi plants. At the same time, the degrees of membrane and Rubisco damage in chi was the highest, followed by Col, and ans was the smallest. The results showed that ans with high antioxidant capacity showed higher resistance to STHL treatment than Col containing anthocyanins, while chi with no anthocyanin accumulation and small antioxidant capacity had the lowest resistance. In addition, the gene expression results showed that plants tend to synthesize anthocyanin precursor flavonoids with antioxidant capacity under STHL stress. To further determine the major mechanism of photoprotection under STHL, we also analyzed Arabidopsis lines (Col, CHS1, CHS2 and tt4) that had the same anthocyanin content but different antioxidant capacities. It was found that CHS2 with high antioxidant capacity had higher cell viability, smaller maximal quantum yield of PSII photochemistry (Fv/Fm) reduction and less reactive oxygen species (ROS) accumulation under HL treatment of their mesophyll protoplasts. Therefore, the antioxidant capacity provided by antioxidant substances was the major mechanism of plant photoprotection under STHL treatment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Antocianinas , Antioxidantes , Luz , Folhas de Planta , Receptores Imunológicos
12.
Front Plant Sci ; 12: 638796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025690

RESUMO

Phenotypic plasticity affords invasive plant species the ability to colonize a wide range of habitats, but physiological plasticity of their stems is seldom recognized. Investigation of the stem plasticity of invasive plant species could lead to a better understanding of their invasiveness. We performed pot experiments involving defoliation treatments and isolated culture experiments to determine whether the invasive species Mikania micrantha exhibits greater plasticity in the stems than do three non-invasive species that co-occur in southern China and then explored the mechanism underlying the modification of its stem photosynthesis. Our results showed that the stems of M. micrantha exhibited higher plasticity in terms of either net or gross photosynthetic rate in response to the defoliation treatment. These effects were positively related to an increased stem elongation rate. The enhancement of stem photosynthesis in M. micrantha resulted from the comprehensive action involving increases in the Chl a/b ratio, D1 protein and stomatal aperture, changes in chloroplast morphology and a decrease in anthocyanins. Increased plasticity of stem photosynthesis may improve the survival of M. micrantha under harsh conditions and allow it to rapidly recover from defoliation injuries. Our results highlight that phenotypic plasticity promotes the invasion success of alien plant invaders.

13.
Front Pharmacol ; 12: 615104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746754

RESUMO

Background: Brain-derived nerve growth factor (BDNF) is a promising effective target for the treatment of Alzheimer's disease (AD). BDNF, which has a high molecular weight, has difficulty in crossing the blood-brain barrier (BBB). The study aimed to prepare microbubbles loading brain-derived nerve growth factor (BDNF) retrovirus (MpLXSN-BDNF), to verify the characteristics of the microbubbles, and to study the therapeutic effect of the microbubbles combined with ultrasound on the opening of the blood-brain barrier in an AD rat model. Methods: 32 adult male SD rats were randomly divided into four groups: control group, ultrasound + pLXSN-EGFP microbubble group (U + MpLXSN-BDNF), ultrasound + pLXSN-BDNF microbubble group, and ultrasound + microbubble + pLXSN-BDNF virus group (U + MpLXSN-BDNF), with eight rats in each group. At the same time, the left hippocampus of rats was irradiated with low-frequency focused ultrasound guided by MRI to open the blood-brain barrier (BBB). The effects of BDNF overexpression on AD rats were evaluated behaviorally before and 1 month after the treatment. The number of acetylcholinesterase (ChAT)-positive cells and the content of acetylcholine (ACh) in brain tissues were determined by immunohistochemistry and high-performance liquid chromatography (HPLC), respectively. IF staining of synaptic spines and Western blot of synaptophysin presented herein detected synaptic density recovery. Results: Signal intensity enhancement at the BBB disruption sites could be observed on the MR images. The behavioral evaluation showed that the times of crossing the original platform in the U + MpLXSN-BDNF group increased significantly after treatment. Immunohistochemistry and HPLC revealed that the number of ChAT-positive neurons and the contents of ACh in the brain were significantly decreased in the treated groups compared with the controls. IF staining of synaptic spines and Western blot data of synaptophysin showed that the U + MpLXSN-BDNF group can recover the synaptic loss better by BDNF supplementation than the other treatment groups. Conclusion: Ultrasound combined with viral microbubbles carrying BDNF can increase the transfection efficiency of brain neurons, promote the high expression of exogenous gene BDNF, and play a therapeutic role in the AD model rats.

14.
Plant Physiol Biochem ; 160: 365-376, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33550177

RESUMO

Theoretical and experimental studies have demonstrated that temperature is an important environmental factor that affects the regional distribution of plants. However, how to modify the distribution pattern of plants in different regions is a focus of current research. Obtain the information of cold tolerance genes from cold tolerance species, cloning genes with real cold tolerance effects is one of the most important ways to find the genes related to cold tolerance. In this study, we investigated whether transferring the VHA-c gene from Antarctic notothenioid fishes into Arabidopsis enhances freezing tolerance of Arabidopsis. The physiological response and molecular changes of VHA-c overexpressing pedigree and wildtype Arabidopsis were studied at -20 °C. The results showed that the malondialdehyde (MDA) and membrane leakage rates of WT plants were significantly higher than those of VHA-c8 and VHA-c11 plants, but the soluble sugar, soluble protein, proline and ATP contents of WT plants were significantly lower than those of VHA-c8 and VHA-c11 plants under -20 °C freezing treatment. The survival rate, VHA-c gene expression level and VHA-c protein contents of WT plants were significantly lower than those of VHA-c8 and VHA-c11 plants under -20 °C freezing treatment. Correlation analysis showed that ATP content was significantly negatively correlated with MDA and membrane leakage rate, and positively correlated with soluble sugar, soluble protein and proline content under -20 °C freezing treatment. These results demonstrated that overexpression of the VHA-c gene provided strong freezing tolerance to Arabidopsis by increasing the synthesis of ATP and improved the adaptability of plants in low temperature environment.


Assuntos
Arabidopsis/fisiologia , Proteínas de Peixes/fisiologia , Peixes/genética , Congelamento , ATPases Vacuolares Próton-Translocadoras/fisiologia , Animais , Regiões Antárticas , Arabidopsis/genética , Temperatura Baixa , Proteínas de Peixes/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/fisiologia , ATPases Vacuolares Próton-Translocadoras/genética
15.
Tree Physiol ; 41(9): 1669-1684, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-33611548

RESUMO

Differences in plant shade tolerance constitute a major mechanism driving the succession of forest communities in subtropical forests. However, the indirect effects of differences in light requirements on the growth of mid- and late-successional tree species are unclear, and this potential growth effect has not been explained at the transcriptome level. Here, a typical mid-successional dominant tree species, Schima superba Gardn. et Champ, and a typical late-successional dominant tree species, Cryptocarya concinna Hance were used as materials and planted under 100% full light (FL) and 30% FL (low light, LL) to explore the responses of tree species in different successional stages of subtropical forests to different light environments. Transcriptome sequencing was used to analyze the expression changes in genes related to growth and photoprotection under different light environments. The young leaves of S. superba accumulated more malondialdehyde (MDA) and superoxide radicals (${\mathrm{O}}_2^{{{}^{\bullet}}^{-}}$) under LL. A lower hormone content (auxin, cytokinin, gibberellin) in the young leaves, a weaker photosynthetic capacity in the mature leaves and significant downregulation of related gene expression were also found under LL, which resulted in the total biomass of S. superba under LL being lower than that under FL. The young leaves of C. concinna had less MDA and ${\mathrm{O}}_2^{{{}^{\bullet}}^{-}}$, and a higher hormone contents under LL than those under FL. There was no significant difference in photosynthetic capacity between mature leaves in contrasting light environments. Although the biomass of C. concinna under LL was less than that under FL, the height of C. concinna under LL was higher than that under FL, indicating that C. concinna could grow well under the two light environments. Our results describing the acclimatization of light at the physiological, molecular and transcriptome levels are important for a complete understanding of successional mechanisms.


Assuntos
Árvores , Clima Tropical , Florestas , Fotossíntese , Folhas de Planta , Transcriptoma , Árvores/genética
16.
Photosynth Res ; 149(1-2): 25-40, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32462454

RESUMO

Anthocyanins are water-soluble pigments in plants known for their photoprotective role against photoinhibitory and photooxidative damage under high light (HL). However, it remains unclear whether light-shielding or antioxidant activity plays a major role in the photoprotection exerted by anthocyanins under HL stress. To shed light on this question, we analyzed the physiological and biochemical responses to HL of three Arabidopsis thaliana lines (Col, chi, ans) with different light absorption and antioxidant characteristics. Under HL, ans had the highest antioxidant capacity, followed by Col, and finally chi; Col had the strongest light attenuation capacity, followed by chi, and finally ans. The line ans had weaker physiological activity of chloroplasts and more severe oxidative damage than chi after HL treatment. Col with highest photoprotection of light absorption capacity had highest resistance to HL among the three lines. The line ans with high antioxidant capacity could not compensate for its disadvantages in HL caused by the absence of the light-shielding function of anthocyanins. In addition, the expression level of the Anthocyanin Synthase (ANS) gene was most upregulated after HL treatment, suggesting that the conversion of colorless into colored anthocyanin precursors was necessary under HL. The contribution of anthocyanins to flavonoids, phenols, and antioxidant capacity increased in the late period of HL, suggesting that plants prefer to synthesize red anthocyanins (a group of colored antioxidants) over other colorless antioxidants to cope with HL. These experimental observations indicate that the light attenuation role of anthocyanins is more important than their antioxidant role in photoprotection.


Assuntos
Adaptação Ocular/fisiologia , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Proteção Radiológica , Luz Solar/efeitos adversos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação , Estresse Oxidativo/fisiologia , Fenótipo , Fotossíntese/fisiologia
17.
Photosynth Res ; 149(1-2): 41-55, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32902777

RESUMO

Increasing amounts of experimental evidence show that anthocyanins provide physiological protection to plants under stress. However, the difference in photoprotection mediated by anthocyanins and other photoprotective substances in different seasons is still uncertain. To determine the relationship between anthocyanin accumulation and the photoprotective effects in different seasons, Castanopsis chinensis and Acmena acuminatissima, whose anthocyanin accumulation patterns differ in different seasons, were used as materials to explain how plants adapt to different seasons; as such, their physiological and biochemical responses were analyzed. Young leaves of C. chinensis and A. acuminatissima presented different colors in the different seasons. In summer, the young leaves of C. chinensis were purplish red, while those of A. acuminatissima were light green. In winter, the young leaves of C. chinensis were light green, while those of A. acuminatissima were red. Compared with the young red leaves, the young light green leaves that did not accumulate anthocyanins had higher flavonoid and phenolics contents, total antioxidant capacity, non-photochemical quenching (NPQ), and relative membrane leakage, and a slower recovery rate in the maximum photochemical efficiency (Fv/Fm) after high-light treatment. In addition, the net photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (gs), and the effective quantum yield of PSII (ΦPSII) of the young leaves in winter were significantly lower than those in summer, while the activities of catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), and superoxide dismutase (SOD, EC 1.15.1.1) were significantly higher than those in summer. These data indicate that to adapt to seasonal changes anthocyanins, other antioxidative substances and antioxidative enzymes, as well as components involved in the safe dissipation of excitation energy as heat need to cooperate with one another.


Assuntos
Adaptação Ocular/fisiologia , Antocianinas/metabolismo , Fagaceae/metabolismo , Myrtaceae/metabolismo , Pigmentação/fisiologia , Folhas de Planta/metabolismo , Estações do Ano , Luz Solar/efeitos adversos , Antioxidantes/metabolismo , China , Fenótipo , Fotossíntese/fisiologia
18.
Oncol Lett ; 21(1): 68, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33365079

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a highly malignant and deadly tumor. Radiation therapy is one of the primary treatments for locally advanced ESCC. However, the biomarkers for prognosis of definitive radiation remain undefined. Peripheral blood circulating tumor (ct)DNA provides information of tumor genetic alterations and has been confirmed as a potential non-invasive biomarker for several types of cancer. The present study investigated the clinical implications of ctDNA detection in patients with ESCC and receiving definitive radiation therapy. Patients with locally advanced ESCC were retrospectively recruited. Plasma samples were collected before, during and following radiation therapy. Next-generation sequencing was performed to identify somatic mutations in 180 genes. A total of 69 baseline and post-radiation plasma samples were collected from 25 patients. A total of 59 non-silent single nucleotide variants were present in 33 genes. All pre-radiation and 58.3% (14/24) of post-radiation samples had at least one mutation. Patients with lymph node metastases (LNM) exhibited a higher number of pre-radiation mutations compared with those without LNM. The variables, progression-free survival (PFS) and overall survival (OS) of the patients with one baseline mutation were not significantly different compared with that in patients with more than one baseline mutation. Patients with initial ctDNA-positive post-radiation samples exhibited significantly reduced PFS (P=0.047) and OS (P=0.005) compared with that in patients with ctDNA-negative samples. The post-radiation plasma ctDNA status was an independent prognostic factor from univariate and multivariate analyses. Dynamic monitoring of ctDNA during follow-up was examined. The results indicated that ctDNA was a predictive and prognostic marker in patients with ESCC and receiving definitive radiation therapy, which may guide subsequent treatment.

19.
Photosynth Res ; 149(1-2): 121-134, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32297101

RESUMO

Biological invasion is a hot topic in ecological research. Most studies on the physiological mechanisms of plants focus on leaves, but few studies focus on stems. To study the tolerance of invasive plant (Sphagneticola trilobata L.) to low temperature, relevant physiological indicators (including anthocyanin and chlorophyll) in different organs (leaves and stems) were analyzed, using a native species (Sphagneticola calendulacea L.) as the control. The results showed that, upon exposure to low temperature for 15 days, the stems of two Sphagneticola species were markedly reddened, their anthocyanin content increased, chlorophyll and chlorophyll fluorescence parameters decreased, and the accumulation of reactive oxygen species in the stem increased. The percentage increases of antioxidants and total antioxidant capacities in stems were significantly higher in S. trilobata than in S. calendulacea. This showed that S. trilobata had higher cold tolerance in stems while leaves were opposite. To further verify the higher cold tolerance of the stem of S. trilobata, a defoliation experiment was designed. We found that the defoliated stem of S. trilobata reduced anthocyanin accumulation and increased chlorophyll content, while alleviating membrane lipid damage and electrical conductivity, and the defoliated stem still showed an increase in stem diameter and biomass under low temperature. The discovery of the physiological and adaptive mechanisms of the stem of S. trilobata to low temperature will provide a theoretical basis for explaining how S. trilobata maintains its annual growth in South China. This is of great significance for predicting the future spread of cloned and propagated invasive plants.


Assuntos
Adaptação Fisiológica , Asteraceae/fisiologia , Temperatura Baixa/efeitos adversos , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Plantas Daninhas/fisiologia , China , Espécies Introduzidas
20.
Sci Rep ; 10(1): 17810, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082378

RESUMO

Sphagneticola trilobata (L.) Pruski is one of the fast-growing malignant weeds in South China. It has severely influenced local biodiversity and native plant habitat. Photosynthesis is the material basis of plant growth and development. However, there are few reports on the photosynthetic transcriptome of S. trilobata. In this study, S. trilobata had a relatively large leaf area and biomass. The gas exchange parameters per unit area of leaves, including net photosynthetic capacity (Pn), intercellular CO2 (Ci), stomatal conductance (Gs), transpiration rate (Tr), water use efficiency (WUE), photosynthetic pigment and Rubisco protein content were higher than those of the native plant Sphagneticola calendulacea (L.) Pruski. On this basis, the differences in photosynthesis pathways between the two Sphagneticola species were analyzed by using the Illumina HiSeq platform. The sequencing results for S. trilobata and S. calendulacea revealed 159,366 and 177,069 unigenes, respectively. Functional annotation revealed 119,350 and 150,846 non-redundant protein database annotations (Nr), 96,637 and 115,711 Swiss-Prot annotations, 49,159 and 60,116 Kyoto Encyclopedia of Genes and Genomes annotations (KEGG), and 83,712 and 97,957 Gene Ontology annotations (GO) in S. trilobata and S. calendulacea, respectively. Additionally, our analysis showed that the expression of key protease genes involved in the photosynthesis pathway, particularly CP43, CP47, PsbA and PetC, had high expression levels in leaves of S. trilobata in comparison to native species. Physiological and transcriptomic analyses suggest the high expression of photosynthetic genes ensures the high photosynthetic capacity of leaves, which is one of the inherent advantages underlying the successful invasion by S. trilobata.


Assuntos
Peptídeo Hidrolases/genética , Fotossíntese/genética , Proteínas de Plantas/genética , Wedelia/fisiologia , Biodiversidade , China , Ecologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Folhas de Planta , Especificidade da Espécie , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA