Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 20(1): 1-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164185

RESUMO

To find new molecular targets for triple negative breast cancer (TNBC), we analyzed a large-scale drug screening dataset based on breast cancer subtypes. We discovered that BDP-9066, a specific MRCK inhibitor (MRCKi), may be an effective drug against TNBC. After confirming the efficacy and specificity of BDP-9066 against TNBC in vitro and in vivo, we further analyzed the underlying mechanism of specific activity of BDP-9066 against TNBC. Comparing the transcriptome of BDP-9066-sensitive and -resistant cells, the activation of the focal adhesion and YAP/TAZ pathway were found to play an important role in the sensitive cells. Furthermore, YAP/TAZ is indeed repressed by BDP-9066 in the sensitive cells, and active form of YAP suppresses the effects of BDP-9066. YAP/TAZ expression and activity are high in TNBC, especially the Claudin-low subtype, consistent with the expression of focal adhesion-related genes. Interestingly, NF-κB functions downstream of YAP/TAZ in TNBC cells and is suppressed by BDP-9066. Furthermore, the PI3 kinase pathway adversely affected the effects of BDP-9066 and that alpelisib, a PI3 kinase inhibitor, synergistically increased the effects of BDP-9066, in PIK3CA mutant TNBC cells. Taken together, we have shown for the first time that MRCKi can be new drugs against TNBC, particularly the Claudin-low subtype.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias de Mama Triplo Negativas , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas de Sinalização YAP , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Claudinas/genética , Claudinas/metabolismo , Linhagem Celular Tumoral
2.
Mol Oncol ; 17(8): 1648-1665, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37013960

RESUMO

CUB domain-containing protein 1 (CDCP1) contributes to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance by regulating EGFR signaling pathways and is a potential target in lung cancer treatment. This study aims to identify a CDCP1 reducer that synergistically improves TKI treatment. Utilizing a high-throughput drug screening system, a phytoestrogen 8-isopentenylnaringenin (8PN) was identified. Upon 8PN treatment, CDCP1 protein levels and malignant features were reduced. 8PN exposure caused the accumulation of lung cancer cells in G0/G1 phase and increased the proportion of senescent cells. In EGFR TKI-resistant lung cancer cells, the combination of 8PN and TKI synergistically reduced cell malignance, inhibited downstream EGFR pathway signaling, and exerted additive effects on cell death. Moreover, combination therapy effectively reduced tumor growth and enhanced tumor necrosis in tumor xenograft mice models. Mechanistically, 8PN increased interleukin (IL)6 and IL8 expression, induced neutrophil infiltration, and enhanced neutrophil-mediated cytotoxicity to attenuate lung cancer cell growth. In conclusion, 8PN enhances the anticancer efficacy of EGFR TKI on lung cancer and triggers neutrophil-dependent necrosis, highlighting the potential to overcome TKI resistance in lung cancer patients who have EGFR mutation.


Assuntos
Receptores ErbB , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Receptores ErbB/genética , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/genética , Necrose , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Mutação , Antígenos de Neoplasias , Moléculas de Adesão Celular/genética
3.
JCI Insight ; 7(23)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36264639

RESUMO

Docetaxel (DTX) combined with cisplatin and 5-fluorouracil has been used as induction chemotherapy for head and neck squamous cell carcinoma (HNSCC). However, the development of acquired resistance remains a major obstacle to treatment response. Tumor-associated macrophages are associated with chemotherapeutic resistance. In the present study, increased infiltration of macrophages into the tumor microenvironment (TME) was significantly associated with shorter overall survival and increased resistance to chemotherapeutic drugs, particularly DTX, in patients with HNSCC. Macrophage coculture induced expression of intercellular adhesion molecule 1 (ICAM1), which promotes stemness and the formation of polyploid giant cancer cells, thereby reducing the efficacy of DTX. Both genetic silencing and pharmacological inhibition of ICAM1 sensitized HNSCC to DTX. Macrophage secretion of IL-1ß was found to induce tumor expression of ICAM1. IL-1ß neutralization and IL-1 receptor blockade reversed DTX resistance induced by macrophage coculture. IL-1ß activated superoxide dismutase 2 and inhibited catalase, thereby modulating intracellular levels of ROS and inducing ICAM1 expression. Arsenic trioxide (ATO) reduced macrophage infiltration into the TME and impaired IL-1ß secretion by macrophages. The combinatorial use of ATO enhanced the in vivo efficacy of DTX in a mouse model, which may provide a revolutionary approach to overcoming acquired therapeutic resistance in HNSCC.


Assuntos
Docetaxel , Neoplasias de Cabeça e Pescoço , Molécula 1 de Adesão Intercelular , Interleucina-1beta , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Camundongos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Molécula 1 de Adesão Intercelular/genética , Macrófagos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Microambiente Tumoral , Humanos , Interleucina-1beta/metabolismo , Transdução de Sinais
4.
Front Oncol ; 12: 851795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992877

RESUMO

The cGAS-STING axis is one of the key mechanisms guarding cells from pathogen invasion in the cytoplasmic compartment. Sensing of foreign DNA in the cytosol by the cGAS-STING axis triggers a stress cascade, culminating at stimulation of the protein kinase TBK1 and subsequently activation of inflammatory response. In cancer cells, aberrant metabolism of the genomic DNA induced by the hostile milieu of tumor microenvironment or stresses brought about by cancer therapeutics are the major causes of the presence of nuclear DNA in the cytosol, which subsequently triggers a stress response. However, how the advanced tumors perceive and tolerate the potentially detrimental effects of cytosolic DNA remains unclear. Here we show that growth limitation by serum starvation activated the cGAS-STING pathway in breast cancer cells, and inhibition of cGAS-STING resulted in cell death through an autophagy-dependent mechanism. These results suggest that, instead of being subject to growth inhibition, tumors exploit the cGAS-STING axis and turn it to a survival advantage in the stressful microenvironment, providing a new therapeutic opportunity against advanced cancer. Concomitant inhibition of the cGAS-STING axis and growth factor signaling mediated by the epidermal growth factor receptor (EGFR) synergistically suppressed the development of tumor organoids derived from primary tumor tissues of triple-negative breast cancer (TNBC). The current study unveils an unexpected function of the cGAS-STING axis in promoting cancer cell survival and the potential of developing the stress-responding pathway as a therapeutic target, meanwhile highlights the substantial concerns of enhancing the pathway's activity as a means of anti-cancer treatment.

5.
Am J Cancer Res ; 12(4): 1436-1455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530286

RESUMO

Tricarboxylic acid (TCA) cycle, also called Krebs cycle or citric acid cycle, is an amphoteric pathway, contributing to catabolic degradation and anaplerotic reactions to supply precursors for macromolecule biosynthesis. Oxoglutarate dehydrogenase complex (OGDHc, also called α-ketoglutarate dehydrogenase) a highly regulated enzyme in TCA cycle, converts α-ketoglutarate (αKG) to succinyl-Coenzyme A in accompany with NADH generation for ATP generation through oxidative phosphorylation. The step collaborates with glutaminolysis at an intersectional point to govern αKG levels for energy production, nucleotide and amino acid syntheses, and the resources for macromolecule synthesis in cancer cells with rapid proliferation. Despite being a flavoenzyme susceptible to electron leakage contributing to mitochondrial reactive oxygen species (ROS) production, OGDHc is highly sensitive to peroxides such as HNE (4-hydroxy-2-nonenal) and moreover, its activity mediates the activation of several antioxidant pathways. The characteristics endow OGDHc as a critical redox sensor in mitochondria. Accumulating evidences suggest that dysregulation of OGDHc impairs cellular redox homeostasis and disturbs substrate fluxes, leading to a buildup of oncometabolites along the pathogenesis and development of cancers. In this review, we describe molecular interactions, regulation of OGDHc expression and activity and its relationships with diseases, specifically focusing on cancers. In the end, we discuss the potential of OGDHs as a therapeutic target for cancer treatment.

6.
Cells ; 10(9)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34572050

RESUMO

Heme oxygenases (HOs) act on heme degradation to produce carbon monoxide (CO), free iron, ferritin, and biliverdin. Upregulation of cellular HO-1 levels is signature of oxidative stress for its downstream effects particularly under pro-oxidative status. Subcellular traffics of HO-1 to different organelles constitute a network of interactions compromising a variety of effectors such as pro-oxidants, ROS, mitochondrial enzymes, and nucleic transcription factors. Some of the compartmentalized HO-1 have been demonstrated as functioning in the progression of cancer. Emerging data show the multiple roles of HO-1 in tumorigenesis from pathogenesis to the progression to malignancy, metastasis, and even resistance to therapy. However, the role of HO-1 in tumorigenesis has not been systematically addressed. This review describes the crosstalk between HO-1 and oxidative stress, and following redox regulation in the tumorigenesis. HO-1-regulated signaling pathways are also summarized. This review aims to integrate basic information and current progress of HO-1 in cancer research in order to enhance the understandings and facilitate following studies.


Assuntos
Heme Oxigenase-1/metabolismo , Neoplasias/patologia , Estresse Oxidativo , Animais , Humanos , Neoplasias/enzimologia , Oxirredução , Transdução de Sinais
7.
Oncol Rep ; 46(1)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34013378

RESUMO

Triple­negative breast cancer (TNBC) behaves aggressively in the invasive and metastatic states. Our research group recently developed a novel curcumin derivative, (1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6-triene-1,7-diyl)bis(2­methoxy-4,1­phenylene)bis(3-hydroxy2-hydroxymethyl)-2­methyl propanoate (MTH­3), and previous studies showed that MTH­3 inhibits TNBC proliferation and induces apoptosis in vitro and in vivo with a superior bioavailability and absorption than curcumin. In the present study, the effects of MTH­3 on TNBC cell invasion were examined using various assays and gelatin zymography, and western blot analysis. Treatment with MTH­3 inhibited MDA­MB­231 cell invasion and migration, as shown by Transwell assay, 3D spheroid invasion assay, and wound healing assay. The results of the gelatin zymography experiments revealed that MTH­3 decreased matrix metalloproteinase­9 activity. The potential signaling pathways were revealed by next­generation sequencing analysis, antibody microarray analysis and western blot analysis. In conclusion, the results of the present study show that, MTH­3 inhibited tumor cell invasion through the MAPK/ERK/AKT signaling pathway and cell cycle regulatory cascade, providing significant information about the potential molecular mechanisms of the effects of MTH­3 on TNBC.


Assuntos
Antineoplásicos/farmacologia , Diarileptanoides/farmacologia , Perfilação da Expressão Gênica/métodos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética , Antineoplásicos/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diarileptanoides/química , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Análise de Sequência de RNA , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
8.
Am J Cancer Res ; 11(3): 945-954, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791165

RESUMO

Long non-coding RNAs (lncRNAs) are increasingly recognized as promising targets in cancer treatment. However, compared to targeting the ordinary protein-coding genes, suppressing non-coding RNAs expressed in cancer cells has been a more challenging task. The major hurdles lay on the requirement of a tumor-specific delivery system for the designated inhibitor to suppress the target transcripts within the cellular compartment. EGFR is a cancer driver gene which is frequently associated with the triple-negative phenotype of breast cancer. Prior studies have shown that expression of the tumor-promoting lncRNA HOTAIR (HOX antisense intergenic RNA) is positively regulated by the epithelial growth factor receptor (EGFR) in triple-negative breast cancer (TNBC), and consistently the expression of both genes is closely correlated in breast cancer. Here we show that a chimeric aptamer recognizing the epithelial growth factor receptor (EGFR) coupled with a siRNA against HOTAIR (EGFR aptamer-coupled siHOTAIR) preferentially and effectively down-regulated HOTAIR in EGFR-expressing cancer cells. Functionally, the EGFR aptamer-coupled siHOTAIR more potently inhibited the growth, migration, and invasion of EGFR-expressing TNBC cells as well as cells with reconstituted EGFR compared to cancer cells with low EGFR expression. Our results demonstrate a novel strategy of targeting cancer progression by aptamer-directed delivery of anti-lncRNA RNA interference that can be applicable to other cellular contexts and cancer types.

9.
Animals (Basel) ; 10(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114772

RESUMO

Past studies regarding to insulin secretion and glucose disposal in chickens were focused on rapidly growing juvenile broilers and may not reflect glucose/insulin physiology in adulthood. The study aimed to assess insulin secretion and glucose disposal in respect to restricted (R) vs. ad libitum (Ad) feed intake for obesity development in broiler breeder hens. Hens at age of 26 weeks were continued on R rations, or allowed Ad-feed intake up to 45 weeks. Results from prandial changes and glucose tolerance test suggested that Ad-feed intake to 45 weeks impaired insulin secretion and glucose clearance, and, thus, caused hyperglycemia in accompany with transient hyperinsulinemia at age of 33 weeks (p < 0.05). The alterations were shown operating at both transcript and protein level of insulin gene expression per se and at ATP supply for insulin release as evidenced by consistent changes of enzyme expression and activity in pyruvate anaplerosis in the ß-islets (p < 0.05). Ad-feed intake also increased ß-islet triacylglycerol and ceramide accumulation and provoked interleukin-1ß (IL-1ß) production (p < 0.05), which were further manifested by a detrimental increase of caspase 3/7 activity and cell apoptosis (p < 0.05). Results support the conclusion that release to Ad-feed intake in broiler breeder hens transiently induced hyperinsulinemia along rapid bodyweight gain and adiposity, but later provoked lipotoxicity and inflammation leading to ß-cell apoptosis and ultimately impaired insulin secretion and glucose disposal.

10.
Toxins (Basel) ; 12(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003487

RESUMO

Nano-silicate platelets (NSP), an exfoliated product from natural clays, have been validated for biosafety and as an effective supplement to alleviate mycotoxicosis. Since NSP induced noticeable cell death, we therefore investigated further the mechanism of cytotoxicity caused by NSP. Exposure to NSP impaired membrane integrity and caused cell death in a dose-dependent manner. Reactive oxygen species (ROS) generation other than of NADH oxidase origin, and subcellular interactions by internalized NSP also contributed to NSP-induced cell death. NSP persistently provoked receptor-interacting protein 1 Ser/Thr (RIP1) kinase and caspase 6 and 3/7 activation without altering caspase 8 activity and induced evident chromatolysis of necrosis in the later stage. These events proceeded along with increased ER stress and mitochondrial permeability, to final Cyt-C (Cytochrome C) release and AIF (apoptosis inducing factor) translocation, a hallmark of cell necroptosis. Fluorescent probing further manifested NSP traffic, mostly adherence on the cell surfaces, or via internalization, being compartmentalized in the nuclei, cytosols, and mitochondria. Pharmacological approaches with specific inhibitors suggested that endocytosis and particularly RIP1 kinase provocation mediate NSP-induced cell death independent of caspase activation. In conclusion, the necroptotic process contributes to most of the cell death induced by NSP due to membrane interactions/impaired integrity, ROS generation, and subcellular interactions by internalized NSP.


Assuntos
Fibroblastos/efeitos dos fármacos , Nanopartículas/toxicidade , Necroptose/efeitos dos fármacos , Dióxido de Silício/toxicidade , Animais , Relação Dose-Resposta a Droga , Endocitose , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células NIH 3T3 , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Fatores de Tempo
11.
Redox Biol ; 34: 101571, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32446175

RESUMO

Recurrence and metastasis remain the major cause of cancer mortality. Even for early-stage lung cancer, adjuvant chemotherapy yields merely slight increase to patient survival. EF-hand domain-containing protein D2 (EFHD2) has recently been implicated in recurrence of patients with stage I lung adenocarcinoma. In this study, we investigated the correlation between EFHD2 and chemoresistance in non-small cell lung cancer (NSCLC). High expression of EFHD2 was significantly associated with poor overall survival of NSCLC patients with chemotherapy in in silica analysis. Ectopic EFHD2 overexpression increased cisplatin resistance, whereas EFHD2 knockdown improved chemoresponse. Mechanistically, EFHD2 induced the production of NADPH oxidase 4 (NOX4) and in turn the increase of intracellular reactive oxygen species (ROS), consequently activating membrane expression of the ATP-binding cassette subfamily C member 1 (ABCC1) for drug efflux. Non-steroidal anti-inflammatory drug (NSAID) ibuprofen suppressed EFHD2 expression by leading to the proteasomal and lysosomal degradation of EFHD2 through a cyclooxygenase (COX)-independent mechanism. Combining ibuprofen with cisplatin enhanced antitumor responsiveness in a murine xenograft model in comparison with the individual treatment. In conclusion, we demonstrate that EFHD2 promotes chemoresistance through the NOX4-ROS-ABCC1 axis and therefore developing EFHD2-targeting strategies may offer a new avenue to improve adjuvant chemotherapy of lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Proteínas de Ligação ao Cálcio , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
12.
Cancers (Basel) ; 11(11)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717460

RESUMO

Dedicator of cytokinesis 1 (DOCK1) is a critical regulator of cancer metastasis. Claudins are transmembrane proteins that play a role in epithelial barrier integrity. Due to a loss or low expression of claudins (CLDN), the claudin-low type of triple-negative breast cancer (TNBC) is characterized by a mesenchymal-like phenotype with strong metastatic potential. In order to elucidate the mechanism of DOCK1 in cancer metastasis, we first analyzed the transcriptomic changes using a clinical database of human TNBC and found that the increase in DOCK1 expression was highly correlated with the poor survival rate of TNBC patients. Interference with DOCK1 expression by shRNA resulted in re-expression of claudin-1 in conjunction with significant inhibition of cell viability and motility of claudin-low breast cancer cells. Accordingly, overexpression of claudin-1 suppressed cell viability and migration. Genetic knockdown and pharmacological blockade of Rac1/Rac2 up-regulated claudin-1. DOCK1 knockdown also caused a decrease in DNA methyltransferase (DNMT) expression and an increase in claudin-1 transcript and promoter activity. Furthermore, RRP1B mediated DOCK1 depletion, which up-regulated claudin-1 expression, cell viability, and motility in claudin-low breast cancer cells. This study demonstrated that DOCK1 mediates growth and motility through down-regulated claudin-1 expression via the RRP1BDNMTclaudin-1 pathway and that claudin-1 serves as an important effector in DOCK1-mediated cancer progression and metastasis in claudin-low breast cancer cells.

13.
Bioorg Med Chem ; 27(13): 2871-2882, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126820

RESUMO

Betulinic acid (BA), a pentacyclic triterpenoid, exhibits broad spectrum antiproliferative activity, but generally with only modest potency. To improve BA's pharmacological properties, fluorine was introduced as a single atom at C-2, creating two diastereomers, or in a trifluoromethyl group at C-3. We evaluated the impact of these groups on antiproliferative activity against five human tumor cell lines. A racemic 2-F-BA (compound 6) showed significantly improved antiproliferative activity, while each diastereomer exhibited similar effects. We also demonstrated that 2-F-BA is a topoisomerase (Topo) I and IIα dual inhibitor in cell-based and cell-free assays. A hypothetical mode of binding to the Topo I-DNA suggested a difference between the hydrogen bonding of BA and 2-F-BA to DNA, which may account for the difference in bioactivity against Topo I.


Assuntos
Triterpenos/química , Triterpenos/síntese química , Proliferação de Células , Humanos , Estrutura Molecular , Triterpenos Pentacíclicos , Ácido Betulínico
14.
Int J Cancer ; 145(9): 2478-2487, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30963568

RESUMO

The long noncoding RNA HOTAIR plays significant roles in promoting cancer metastasis. However, how it conveys an invasive advantage in cancer cells is not clear. Here we identify the chondroitin sulfotransferase CHST15 (GalNAc4S-6ST) as a novel HOX transcript antisense intergenic RNA (HOTAIR) target gene using RNA profiling and show that CHST15 is required for HOTAIR-mediated invasiveness in breast cancer cells. CHST15 catalyzes sulfation of the C6 hydroxyl group of the N-acetyl galactosamine 4-sulfate moiety in chondroitin sulfate to form the 4,6-disulfated chondroitin sulfate variant known as the CS-E isoform. We show that HOTAIR is necessary and sufficient for CHST15 transcript expression. Inhibition of CHST15 by RNA interference abolished cell invasion promoted by HOTAIR but not on HOTAIR-mediated migratory activity. Conversely, reconstitution of CHST15 expression rescued the invasive activity of HOTAIR-depleted cells. In corroboration with this mechanism, blocking cell surface chondroitin sulfate using a pan-CS antibody or an antibody specifically recognizes the CS-E isoform significantly suppressed HOTAIR-induced invasion. Inhibition of CHST15 compromised tumorigenesis and metastasis in orthotopic breast cancer xenograft models. Furthermore, the expression of HOTAIR closely correlated with the level of CHST15 protein in primary as well as metastatic tumor lesions. Our results demonstrate a novel mechanism underlying the function of HOTAIR in tumor progression through programming the context of cell surface glycosaminoglycans. Our results further establish that the invasive and migratory activities downstream of HOTAIR are distinctly regulated, whereby CHST15 preferentially controls the arm of invasiveness. Thus, the HOTAIR-CHST15 axis may provide a new avenue toward novel therapeutic strategies and prognosis biomarkers for advanced breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Glicoproteínas de Membrana/genética , Invasividade Neoplásica/genética , RNA Longo não Codificante/genética , Sulfotransferases/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/patologia , Interferência de RNA , RNA Interferente Pequeno/genética
15.
Int J Mol Sci ; 20(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30583467

RESUMO

Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors.


Assuntos
Morte Celular , Heme Oxigenase-1/metabolismo , Heme/metabolismo , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Tratamento Farmacológico , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Lett ; 416: 124-137, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29274359

RESUMO

Ferroptosis is a form of oxidative cell death and has become a chemotherapeutic target for cancer treatment. BAY 11-7085 (BAY), which is a well-known IκBα inhibitor, suppressed viability in cancer cells via induction of ferroptotic death in an NF-κB-independent manner. Reactive oxygen species scavenging, relief of lipid peroxidation, replenishment of glutathione and thiol-containing agents, as well as iron chelation, rescued BAY-induced cell death. BAY upregulated a variety of Nrf2 target genes related to redox regulation, particularly heme oxygenase-1 (HO-1). Studies with specific inhibitors and shRNA interventions suggested that the hierarchy of induction is Nrf2-SLC7A11-HO-1. SLC7A11 inhibition by erastin, sulfasalazine, or shRNA interference sensitizes BAY-induced cell death. Overexperession of SLC7A11 attenuated BAY-inhibited cell viability. The ferroptotic process induced by hHO-1 overexpression further indicated that HO-1 is a key mediator of BAY-induced ferroptosis that operates through cellular redox regulation and iron accumulation. BAY causes compartmentalization of HO-1 into the nucleus and mitochondrion, and followed mitochondrial dysfunctions, leading to lysosome targeting for mitophagy. In this study, we first discovered that BAY induced ferroptosis via Nrf2-SLC7A11-HO-1 pathway and HO-1 is a key mediator by responding to the cellular redox status.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Ferro/metabolismo , Nitrilas/farmacologia , Sulfonas/farmacologia , Células A549 , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células HEK293 , Heme Oxigenase-1/metabolismo , Humanos , Células MCF-7 , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Interferência de RNA
17.
Int J Oncol ; 52(1): 67-76, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29138806

RESUMO

Curcumin has been shown to exert potential antitumor activity in vitro and in vivo involved in multiple signaling pathways. However, the application of curcumin is still limited because of its poor hydrophilicity and low bio-availability. In the present study, we investigated the therapeutic effects of a novel and water soluble bis(hydroxymethyl) alkanoate curcuminoid derivative, MTH-3, on human breast adenocarcinoma MDA-MB-231 cells. This study investigated the effect of MTH-3 on cell viability, cell cycle and induction of autophagy and apoptosis in MDA-MB-231 cells. After 24-h treatment with MTH-3, a concentration-dependent decrease in MDA-MB-231 cell viability was observed, and the IC50 value was 5.37±1.22 µM. MTH-3 significantly triggered G2/M phase arrest and apoptosis in MDA-MB-231 cells. Within a 24-h treatment, MTH-3 decreased the CDK1 activity by decreasing CDK1 and cyclin B1 protein levels. MTH-3-induced apoptosis was further confirmed by morphological assessment and annexin V/PI staining assay. Induction of apoptosis caused by MTH-3 was accompanied by an apparent increase of DR3, DR5 and FADD and, as well as a marked decrease of Bcl-2 and Bcl-xL protein expression. MTH-3 also decreased the protein levels of Ero1, PDI, PERK and calnexin, as well as increased the expression of IRE1α, CHOP and Bip that consequently led to ER stress and MDA-MB-231 cell apoptosis. In addition, MTH-3-treated cells were involved in the autophagic process and cleavage of LC3B was observed. MTH-3 enhanced the protein levels of LC3B, Atg5, Atg7, Atg12, p62 and Beclin-1 in MDA-MB-231 cells. Finally, DNA microarray was carried out to investigate the level changes of gene expression modulated by MTH-3 in MDA-MB-231 cells. Taken together, our results suggest that MTH-3 might be a novel therapeutic agent for the treatment of triple-negative breast cancer in the near future.


Assuntos
Curcumina/análogos & derivados , Curcumina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias de Mama Triplo Negativas/genética
18.
Eur J Med Chem ; 131: 141-151, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28319780

RESUMO

Novel bis(hydroxymethyl) alkanoate curcuminoid derivatives were designed, synthesized and screened for in vitro antiproliferative and in vivo antitumor activity. Selected new compound 9a and curcumin were further evaluated for inhibitory activity against ER+/PR+ breast cancer (MCF-7, T47D), HER 2+ breast cancer (SKBR3, BT474, and MDA-MB-457) and triple negative breast cancer (TNBC) (HS-578T, MDA-MB-157, and MDA-MB-468) cell lines. In addition, compound 9a was evaluated in the MDA-MB-231 xenograft nude mice model. Compound 9a exhibited greater inhibitory activity than curcumin against TNBC cells and also demonstrated significant inhibitory activity against doxorubicin-resistant MDA-MB-231 cells, with ten-fold higher potency than curcumin. Furthermore, when evaluated against the MDA-MB-231 xenograft nude mice model, compound 9a alone was ten-fold more potent than curcumin. Moreover, synergistic activity was observed when 9a was used in combination with doxorubicin against MDA-MB-231 breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/síntese química , Curcumina/química , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Am J Cancer Res ; 6(4): 747-63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27186428

RESUMO

We investigated the anticancer potential of a new synthetic compound, 7-(3-fluorophenyl)-4-methylpyrido-[2,3-d]pyrimidin-5(8H)-one (MT3-037). We found that MT3-037 effectively decreased the cancer cell viability by inducing apoptosis. MT3-037 treatments led to cell cycle arrest at M phase, with a marked increase in both expression of cyclin B1 and cyclin-dependent kinase 1 (CDK1) as well as in CDK1 kinase activity. Key proteins that regulate mitotic spindle dynamics, including survivin, Aurora A/B kinases, and polo-like kinase 1 (PLK1), were activated in MT3-037-treated cells. MT3-037-induced apoptosis was accompanied by activation of a pro-apoptotic factor, FADD, and the inactivation of apoptosis inhibitors, Bcl-2 and Bcl-xL, resulting in the cleavage/activation of caspases. The activation of c-Jun N-terminal kinase (JNK) was associated with MT3-037-induced CDK1 and Aurora A/B activation and apoptosis. Immunofluorescence staining of tubulin indicated that MT3-037 altered tubulin networks in cancer cells. Moreover, an in vitro tubulin polymerization assay revealed that MT3-037 inhibited the tubulin polymerization by direct binding to tubulin. Molecular docking studies and binding site completion assays revealed that MT3-037 binds to the colchicine-binding site. Furthermore, MT3-037 significantly inhibited the tumor growth in both MDAMB-468 and Erlotinib-resistant MDA-MB-468 xenograft mouse models. In addition, MT3-037 inhibited the angiogenesis and disrupted the tube formation by human endothelial cells. Our study demonstrates that MT3-037 is a potential tubulin-disrupting agent for antitumor therapy.

20.
Biomedicine (Taipei) ; 6(1): 2, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26872811

RESUMO

Carcinogenesis is a complicated process that involves the deregulation of epigenetics resulting in cellular transformational events, such proliferation, differentiation, and metastasis. Epigenetic machinery changes the accessibility of chromatin to transcriptional regulation through DNA modification. The collaboration of epigenetics and gene transcriptional regulation creates a suitable microenvironment for cancer development, which is proved by the alternation in cell proliferation, differentiation, division, metabolism, DNA repair and movement. Therefore, the reverse of epigenetic dysfunction may provide a possible strategy and new therapeutic targets for cancer treatment. Many dietary components such as sulforaphane and epigallocatechin- 3-gallate have been demonstrated to exert chemopreventive influences, such as reducing tumor growth and enhancing cancer cell death. Anticancer mechanistic studies also indicated that dietary components could display the ability to reverse epigenetic deregulation in assorted tumors via reverting the adverse epigenetic regulation, including alternation of DNA methylation and histone modification, and modulation of microRNA expression. Therefore, dietary components as therapeutic agents on epigenetics becomes an attractive approach for cancer prevention and intervention at the moment. In this review, we summarize the recent discoveries and underlying mechanisms of the most common dietary components for cancer prevention via epigenetic regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA