Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (196)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335101

RESUMO

Heart failure remains the leading cause of death worldwide, creating a pressing need for better preclinical models of the human heart. Tissue engineering is crucial for basic science cardiac research; in vitro human cell culture eliminates the interspecies differences of animal models, while a more tissue-like 3D environment (e.g., with extracellular matrix and heterocellular coupling) simulates in vivo conditions to a greater extent than traditional two-dimensional culture on plastic Petri dishes. However, each model system requires specialized equipment, for example, custom-designed bioreactors and functional assessment devices. Additionally, these protocols are often complicated, labor-intensive, and plagued by the failure of the small, delicate tissues. This paper describes a process for generating a robust human engineered cardiac tissue (hECT) model system using induced pluripotent stem-cell-derived cardiomyocytes for the longitudinal measurement of tissue function. Six hECTs with linear strip geometry are cultured in parallel, with each hECT suspended from a pair of force-sensing polydimethylsiloxane (PDMS) posts attached to PDMS racks. Each post is capped with a black PDMS stable post tracker (SPoT), a new feature that improves the ease of use, throughput, tissue retention, and data quality. The shape allows for the reliable optical tracking of post deflections, yielding improved twitch force tracings with absolute active and passive tension. The cap geometry eliminates tissue failure due to hECTs slipping off the posts, and as they involve a second step after PDMS rack fabrication, the SPoTs can be added to existing PDMS post-based designs without major changes to the bioreactor fabrication process. The system is used to demonstrate the importance of measuring hECT function at physiological temperatures and shows stable tissue function during data acquisition. In summary, we describe a state-of-the-art model system that reproduces key physiological conditions to advance the biofidelity, efficiency, and rigor of engineered cardiac tissues for in vitro applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Engenharia Tecidual , Animais , Humanos , Engenharia Tecidual/métodos , Contração Miocárdica , Miócitos Cardíacos , Reatores Biológicos
2.
Dev Cell ; 41(4): 392-407.e6, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28535374

RESUMO

Mesodermal cells signal to neighboring epithelial cells to modulate their proliferation in both normal and disease states. We adapted a Caenorhabditis elegans organogenesis model to enable a genome-wide mesodermal-specific RNAi screen and discovered 39 factors in mesodermal cells that suppress the proliferation of adjacent Ras pathway-sensitized epithelial cells. These candidates encode components of protein complexes and signaling pathways that converge on the control of chromatin dynamics, cytoplasmic polyadenylation, and translation. Stromal fibroblast-specific deletion of mouse orthologs of several candidates resulted in the hyper-proliferation of mammary gland epithelium. Furthermore, a 33-gene signature of human orthologs was selectively enriched in the tumor stroma of breast cancer patients, and depletion of these factors from normal human breast fibroblasts increased proliferation of co-cultured breast cancer cells. This cross-species approach identified unanticipated regulatory networks in mesodermal cells with growth-suppressive function, exposing the conserved and selective nature of mesodermal-epithelial communication in development and cancer.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/metabolismo , Redes Reguladoras de Genes , Proteínas ras/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem da Célula , Proliferação de Células , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , Genoma , Humanos , Glândulas Mamárias Animais/citologia , Mesoderma/metabolismo , Camundongos , Mutação/genética , Proteínas Nucleares , Especificidade de Órgãos , Fenótipo , Proteínas Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Células Estromais/citologia , Células Estromais/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA