Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Aging Cell ; 22(10): e13964, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37594403

RESUMO

Bloom syndrome (BSyn) is an autosomal recessive disorder caused by variants in the BLM gene, which is involved in genome stability. Patients with BSyn present with poor growth, sun sensitivity, mild immunodeficiency, diabetes, and increased risk of cancer, most commonly leukemias. Interestingly, patients with BSyn do not have other signs of premature aging such as early, progressive hair loss and cataracts. We set out to determine epigenetic age in BSyn, which can be a better predictor of health and disease over chronological age. Our results show for the first time that patients with BSyn have evidence of accelerated epigenetic aging across several measures in blood lymphocytes, as compared to carriers. Additionally, homozygous Blm mice exhibit accelerated methylation age in multiple tissues, including brain, blood, kidney, heart, and skin, according to the brain methylation clock. Overall, we find that Bloom syndrome is associated with accelerated epigenetic aging effects in multiple tissues and more generally a strong effect on CpG methylation levels.


Assuntos
Senilidade Prematura , Síndrome de Bloom , Humanos , Animais , Camundongos , Síndrome de Bloom/genética , Síndrome de Bloom/diagnóstico , Epigênese Genética , Envelhecimento/genética , Senilidade Prematura/genética , Metilação , Metilação de DNA/genética
2.
Pediatr Hematol Oncol ; 40(8): 800-806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334681

RESUMO

Crouzon Syndrome is a genetic craniosynostosis disorder associated with a high risk of ophthalmologic sequelae secondary to structural causes. However, ophthalmologic disorders due to intrinsic nerve aberrations in Crouzon Syndrome have not been described. Optic pathway gliomas (OPGs) are low grade gliomas that are intrinsic to the visual pathway, frequently associated with Neurofibromatosis type 1 (NF-1). OPGs involving both optic nerves without affecting the optic chiasm are rarely seen outside of NF-1. We report an unusual case of bilateral optic nerve glioma without chiasmatic involvement in a 17-month-old male patient with Crouzon Syndrome without any clinical or genetic findings of NF-1. This case suggests that close ophthalmologic follow up and orbital MRIs may benefit patients with Crouzon Syndrome.


Assuntos
Disostose Craniofacial , Neurofibromatose 1 , Glioma do Nervo Óptico , Neoplasias do Nervo Óptico , Humanos , Masculino , Lactente , Glioma do Nervo Óptico/complicações , Vias Visuais , Neoplasias do Nervo Óptico/complicações , Disostose Craniofacial/complicações
3.
Trends Pharmacol Sci ; 44(6): 321-323, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997381

RESUMO

Letters of recommendation are ubiquitous in the research enterprise. Requesting, writing, and reviewing letters of recommendation are all fraught with bias, especially for individuals from groups historically excluded from research environments. We detail how letter reviewers, requesters, and writers can make letters of recommendation a more equitable tool to evaluate scientists.


Assuntos
Internato e Residência , Humanos , Redação
4.
Blood Adv ; 6(21): 5732-5736, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-35914227

RESUMO

Autologous stem cell transplant with gene therapy (ASCT-GT) provides curative therapy while reducing pretransplant immune-suppressive conditioning and eliminating posttransplant immune suppression. Clonal hematopoiesis of indeterminate potential (CHIP)-associated mutations increase and telomere lengths (TLs) shorten with natural aging and DNA damaging processes. It is possible that, if CHIP is present before ASCT-GT or mutagenesis occurs after busulfan exposure, the hematopoietic stem cells carrying these somatic variants may survive the conditioning chemotherapy and have a selective reconstitution advantage, increasing the risk of hematologic malignancy and overall mortality. Seventy-four peripheral blood samples (ranging from baseline to 120 months after ASCT-GT) from 10 pediatric participants who underwent ASCT-GT for adenosine deaminase-deficient severe combined immune deficiency (ADA-SCID) after reduced-intensity conditioning with busulfan and 16 healthy controls were analyzed for TL and CHIP. One participant had a significant decrease in TL. There were no CHIP-associated mutations identified by the next-generation sequencing in any of the ADA-SCID participants. This suggests that further studies are needed to determine the utility of germline analyses in revealing the underlying genetic risk of malignancy in participants who undergo gene therapy. Although these results are promising, larger scale studies are needed to corroborate the effect of ASCT-GT on TL and CHIP. This trial was registered at www.clinicaltrials.gov as #NCT00794508.


Assuntos
Imunodeficiência Combinada Severa , Criança , Humanos , Bussulfano , Hematopoiese Clonal , Terapia Genética , Imunodeficiência Combinada Severa/genética
5.
Front Mol Biosci ; 9: 887758, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782872

RESUMO

Named the "caretakers" of the genome, RecQ helicases function in several pathways to maintain genomic stability and repair DNA. This highly conserved family of enzymes consist of five different proteins in humans: RECQL1, BLM, WRN, RECQL4, and RECQL5. Biallelic germline mutations in BLM, WRN, and RECQL4 have been linked to rare cancer-predisposing syndromes. Emerging research has also implicated somatic alterations in RecQ helicases in a variety of cancers, including hematological malignancies, breast cancer, osteosarcoma, amongst others. These alterations in RecQ helicases, particularly overexpression, may lead to increased resistance of cancer cells to conventional chemotherapy. Downregulation of these proteins may allow for increased sensitivity to chemotherapy, and, therefore, may be important therapeutic targets. Here we provide a comprehensive review of our current understanding of the role of RecQ DNA helicases in cancer and discuss the potential therapeutic opportunities in targeting these helicases.

6.
Genet Med ; 24(7): 1476-1484, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35420546

RESUMO

PURPOSE: This study aimed to describe the spectrum of cancers observed in Bloom Syndrome and the observed survival and age of first cancer diagnosis in Bloom syndrome as these are not well-defined. METHODS: Data from the Bloom Syndrome Registry (BSR) was used for this study. Cancer history, ages of first cancer diagnosis, and ages of death were compiled from the BSR and analyzed. RESULTS: Among the 290 individuals in the BSR, 155 (53%) participants developed 251 malignant neoplasms; 100 (65%) were diagnosed with 1 malignancy, whereas the remaining 55 (35%) developed multiple malignancies. Of the 251 neoplasms, 83 (33%) were hematologic and 168 (67%) were solid tumors. Hematologic malignancies (leukemia and lymphoma) were more common than any of the solid tumors. The most commonly observed solid tumors were colorectal, breast, and oropharyngeal. The cumulative incidence of any malignancy by age 40 was 83%. The median survival for all participants in the BSR was 36.2 years. There were no significant differences in time to first cancer diagnosis or survival by genotype among the study participants. CONCLUSION: We describe the spectrum of cancers observed in Bloom syndrome and the observed survival and age of first cancer diagnosis in Bloom syndrome. We also highlight the significant differences in survival and age of diagnosis seen among different tumor types and genotypes.


Assuntos
Síndrome de Bloom , Neoplasias Hematológicas , Neoplasias , Adulto , Síndrome de Bloom/diagnóstico , Síndrome de Bloom/epidemiologia , Síndrome de Bloom/genética , Neoplasias Hematológicas/diagnóstico , Humanos , Incidência , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Sistema de Registros
7.
Blood ; 139(2): 188-204, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34767029

RESUMO

The discovery of novel hematopoietic stem cell (HSC) surface markers can enhance understanding of HSC identity and function. We have discovered a population of primitive bone marrow (BM) HSCs distinguished by their expression of the heparan sulfate proteoglycan Syndecan-2, which serves as both a marker and a regulator of HSC function. Syndecan-2 expression was increased 10-fold in CD150+CD48-CD34-c-Kit+Sca-1+Lineage- cells (long-term HSCs [LT-HSCs]) compared with differentiated hematopoietic cells. Isolation of BM cells based solely on syndecan-2 surface expression produced a 24-fold enrichment for LT-HSCs and sixfold enrichment for α-catulin+c-kit+ HSCs, and yielded HSCs with superior in vivo repopulating capacity compared with CD150+ cells. Competitive repopulation assays revealed the HSC frequency to be 17-fold higher in syndecan-2+CD34-KSL cells compared with syndecan-2-CD34-KSL cells and indistinguishable from CD150+CD34-KSL cells. Syndecan-2 expression also identified nearly all repopulating HSCs within the CD150+CD34-KSL population. Mechanistically, syndecan-2 regulates HSC repopulating capacity through control of expression of Cdkn1c (p57) and HSC quiescence. Loss of syndecan-2 expression caused increased HSC cell cycle entry, downregulation of Cdkn1c, and loss of HSC long-term repopulating capacity. Syndecan-2 is a novel marker of HSCs that regulates HSC repopulating capacity via control of HSC quiescence.


Assuntos
Células-Tronco Hematopoéticas/citologia , Sindecana-2/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Sindecana-2/genética
8.
Nat Commun ; 12(1): 6990, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848712

RESUMO

Ionizing radiation and chemotherapy deplete hematopoietic stem cells and damage the vascular niche wherein hematopoietic stem cells reside. Hematopoietic stem cell regeneration requires signaling from an intact bone marrow (BM) vascular niche, but the mechanisms that control BM vascular niche regeneration are poorly understood. We report that BM vascular endothelial cells secrete semaphorin 3 A (SEMA3A) in response to myeloablation and SEMA3A induces p53 - mediated apoptosis in BM endothelial cells via signaling through its receptor, Neuropilin 1 (NRP1), and activation of cyclin dependent kinase 5. Endothelial cell - specific deletion of Nrp1 or Sema3a or administration of anti-NRP1 antibody suppresses BM endothelial cell apoptosis, accelerates BM vascular regeneration and concordantly drives hematopoietic reconstitution in irradiated mice. In response to NRP1 inhibition, BM endothelial cells increase expression and secretion of the Wnt signal amplifying protein, R spondin 2. Systemic administration of anti - R spondin 2 blocks HSC regeneration and hematopoietic reconstitution which otherwise occurrs in response to NRP1 inhibition. SEMA3A - NRP1 signaling promotes BM vascular regression following myelosuppression and therapeutic blockade of SEMA3A - NRP1 signaling in BM endothelial cells accelerates vascular and hematopoietic regeneration in vivo.


Assuntos
Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Regeneração/fisiologia , Animais , Apoptose , Medula Óssea/patologia , Células da Medula Óssea , Quinase 5 Dependente de Ciclina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Semaforina-3A/metabolismo , Transdução de Sinais , Transcriptoma , Proteínas Wnt
9.
Am J Med Genet A ; 185(5): 1430-1436, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33683022

RESUMO

Activating variants in the platelet-derived growth factor receptor ß gene (PDGFRB) have been associated with Kosaki overgrowth syndrome, infantile myofibromatosis, and Penttinen premature aging syndrome. A recently described phenotype with fusiform aneurysm has been associated with mosaic PDGFRB c.1685A > G p.(Tyr562Cys) variant. Few reports however have examined the vascular phenotypes and mosaic effects of PDGFRB variants. We describe clinical characteristics of two patients with a recurrent mosaic PDGFRB p.(Tyr562Cys) variant identified via next-generation sequencing-based genetic testing. We observed intracranial fusiform aneurysm in one patient and found an additional eight patients with aneurysms and phenotypes associated with PDGFRB-activating variants through literature search. The conditions caused by PDGFRB-activating variants share overlapping features including overgrowth, premature aged skin, and vascular malformations including aneurysms. Aneurysms are progressive and can result in morbidities and mortalities in the absence of successful intervention. Germline and/or somatic testing for PDGFRB gene should be obtained when PDGFRB activating variant-related phenotypes are present. Whole-body imaging of the arterial tree and echocardiography are recommended after diagnosis. Repeating the imaging study within a 6- to 12-month period after detection is reasonable. Finally, further evaluation for the effectiveness and safety profile of kinase inhibitors in this patient population is warranted.


Assuntos
Aneurisma/genética , Transtornos do Crescimento/genética , Aneurisma Intracraniano/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Adulto , Senilidade Prematura/genética , Aneurisma/epidemiologia , Aneurisma/patologia , Criança , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa/genética , Transtornos do Crescimento/epidemiologia , Transtornos do Crescimento/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Aneurisma Intracraniano/epidemiologia , Aneurisma Intracraniano/patologia , Masculino , Pessoa de Meia-Idade , Mosaicismo , Fenótipo , Anormalidades da Pele/epidemiologia , Anormalidades da Pele/genética , Anormalidades da Pele/patologia , Adulto Jovem
10.
Blood ; 136(4): 441-454, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32369572

RESUMO

Chemotherapy and irradiation cause DNA damage to hematopoietic stem cells (HSCs), leading to HSC depletion and dysfunction and the risk of malignant transformation over time. Extrinsic regulation of HSC DNA repair is not well understood, and therapies to augment HSC DNA repair following myelosuppression remain undeveloped. We report that epidermal growth factor receptor (EGFR) regulates DNA repair in HSCs following irradiation via activation of the DNA-dependent protein kinase-catalytic subunit (DNA-PKcs) and nonhomologous end joining (NHEJ). We show that hematopoietic regeneration in vivo following total body irradiation is dependent upon EGFR-mediated repair of DNA damage via activation of DNA-PKcs. Conditional deletion of EGFR in hematopoietic stem and progenitor cells (HSPCs) significantly decreased DNA-PKcs activity following irradiation, causing increased HSC DNA damage and depressed HSC recovery over time. Systemic administration of epidermal growth factor (EGF) promoted HSC DNA repair and rapid hematologic recovery in chemotherapy-treated mice and had no effect on acute myeloid leukemia growth in vivo. Further, EGF treatment drove the recovery of human HSCs capable of multilineage in vivo repopulation following radiation injury. Whole-genome sequencing analysis revealed no increase in coding region mutations in HSPCs from EGF-treated mice, but increased intergenic copy number variant mutations were detected. These studies demonstrate that EGF promotes HSC DNA repair and hematopoietic regeneration in vivo via augmentation of NHEJ. EGF has therapeutic potential to promote human hematopoietic regeneration, and further studies are warranted to assess long-term hematopoietic effects.


Assuntos
Reparo do DNA por Junção de Extremidades , Receptores ErbB/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Regeneração , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Dano ao DNA , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos
12.
Am J Med Genet A ; 179(12): 2517-2531, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31639285

RESUMO

The hedgehog (Hh) pathway is highly conserved and required for embryonic patterning and determination. Mutations in the Hh pathway are observed in sporadic tumors as well as under syndromic conditions. Common to these syndromes are the findings of polydactyly/syndactyly and brain overgrowth. The latter is also a finding most commonly observed in the cases of mutations in the PI3K/AKT/mTOR pathway. We have identified novel Hh pathway mutations and structural copy number variations in individuals with somatic overgrowth, macrocephaly, dysmorphic facial features, and developmental delay, which phenotypically closely resemble patients with phosphatase and tensin homolog (PTEN) mutations. We hypothesized that brain overgrowth and phenotypic overlap with syndromic overgrowth syndromes in these cases may be due to crosstalk between the Hh and PI3K/AKT/mTOR pathways. To test this, we modeled disease-associated variants by generating PTCH1 and Suppressor of Fused (SUFU) heterozygote cell lines using the CRISPR/Cas9 system. These cells demonstrate activation of PI3K signaling and increased phosphorylation of its downstream target p4EBP1 as well as a distinct cellular phenotype. To further investigate the mechanism underlying this crosstalk, we treated human neural stem cells with sonic hedgehog (SHH) ligand and performed transcriptional analysis of components of the mTOR pathway. These studies identified decreased expression of a set of mTOR negative regulators, leading to its activation. We conclude that there is a significant crosstalk between the SHH and PI3K/AKT/mTOR. We propose that this crosstalk is responsible for why mutations in PTCH1 and SUFU lead to macrocephaly phenotypes similar to those observed in PTEN hamartoma and other overgrowth syndromes associated with mutations in PI3K/AKT/mTOR pathway genes.


Assuntos
Proteínas Hedgehog/metabolismo , Megalencefalia/genética , Megalencefalia/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Pré-Escolar , Feminino , Deleção de Genes , Haploinsuficiência , Humanos , Lactente , Masculino , Megalencefalia/diagnóstico , Modelos Biológicos , Células-Tronco Neurais
13.
Cancer Genet ; 239: 33-35, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31520998

RESUMO

Familial adenomatous polyposis (FAP) is an autosomal dominant condition that predisposes to multiple malignancies, most commonly colorectal carcinoma, but has rarely been associated with lymphoma. We discuss one patient found to have Burkitt-like Lymphoma (BLL) with 11q aberration in the setting of previously undiagnosed FAP. We review the literature of FAP and associated malignancies and the provisional WHO classification of Burkitt-like lymphoma with 11q aberration. Both FAP and Burkitt-like lymphoma with 11q aberration involve perturbation of the MYC network and this may provide insight into a connection between these two diagnoses. However, further study is needed to elucidate if there is an increased risk of BLL and other subtypes of lymphoma among patients with FAP in order to provide optimal counseling and surveillance for patients with FAP.


Assuntos
Polipose Adenomatosa do Colo , Linfoma de Burkitt , Abdome/diagnóstico por imagem , Abdome/patologia , Polipose Adenomatosa do Colo/complicações , Polipose Adenomatosa do Colo/diagnóstico , Polipose Adenomatosa do Colo/genética , Adolescente , Linfoma de Burkitt/complicações , Linfoma de Burkitt/diagnóstico , Linfoma de Burkitt/genética , Aberrações Cromossômicas , Humanos , Masculino
14.
Mol Genet Genomic Med ; 7(7): e00725, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31197971

RESUMO

BACKGROUND: Polycystic kidney disease (PKD) is an inherited condition characterized by progressive development of end-stage renal disease, hypertension, hepatic fibrosis, and cysts in the kidney, liver, pancreas, spleen, thyroid, and epididymis. While malignancies have been reported in association with PKD in adults, the incidence of malignancies in children with PKD is not currently known. METHODS: We report on five patients with a known history of PKD who developed a malignancy as children at the University of California, Los Angeles and the University of Colorado Anschutz Medical Campus. Patients were included from 2012 to 2017. RESULTS: We present five patients with a history of PKD diagnosed with a malignancy during childhood without any additional known mutations to suggest a genetic predisposition to develop cancer. This includes the first reported case of hepatocellular carcinoma in a patient with autosomal recessive polycystic kidney disease. CONCLUSION: Our report illustrates the potential that PKD may be associated with an increased risk for developing cancer, even in children. Further research is necessary to better understand this relationship.


Assuntos
Predisposição Genética para Doença , Neoplasias/genética , Doenças Renais Policísticas/complicações , Adolescente , Criança , Feminino , Humanos , Lactente , Masculino , Neoplasias/complicações , Neoplasias/patologia , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Receptores de Superfície Celular/genética , Canais de Cátion TRPP/genética
15.
Genet Med ; 21(12): 2723-2733, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31239556

RESUMO

PURPOSE: Pathogenic variants in the chromatin organizer CTCF were previously reported in seven individuals with a neurodevelopmental disorder (NDD). METHODS: Through international collaboration we collected data from 39 subjects with variants in CTCF. We performed transcriptome analysis on RNA from blood samples and utilized Drosophila melanogaster to investigate the impact of Ctcf dosage alteration on nervous system development and function. RESULTS: The individuals in our cohort carried 2 deletions, 8 likely gene-disruptive, 2 splice-site, and 20 different missense variants, most of them de novo. Two cases were familial. The associated phenotype was of variable severity extending from mild developmental delay or normal IQ to severe intellectual disability. Feeding difficulties and behavioral abnormalities were common, and variable other findings including growth restriction and cardiac defects were observed. RNA-sequencing in five individuals identified 3828 deregulated genes enriched for known NDD genes and biological processes such as transcriptional regulation. Ctcf dosage alteration in Drosophila resulted in impaired gross neurological functioning and learning and memory deficits. CONCLUSION: We significantly broaden the mutational and clinical spectrum ofCTCF-associated NDDs. Our data shed light onto the functional role of CTCF by identifying deregulated genes and show that Ctcf alterations result in nervous system defects in Drosophila.


Assuntos
Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Transtornos do Neurodesenvolvimento/genética , Animais , Criança , Cromatina/genética , Cromatina/metabolismo , Deficiências do Desenvolvimento/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Humanos , Deficiência Intelectual/genética , Masculino , Mutação/genética , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/metabolismo , Fatores de Transcrição/genética , Sequenciamento do Exoma/métodos , Adulto Jovem
16.
Cell Stem Cell ; 23(3): 370-381.e5, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100167

RESUMO

Bone marrow (BM) perivascular stromal cells and vascular endothelial cells (ECs) are essential for hematopoietic stem cell (HSC) maintenance, but the roles of distinct niche compartments during HSC regeneration are less understood. Here we show that Leptin receptor-expressing (LepR+) BM stromal cells and ECs dichotomously regulate HSC maintenance and regeneration via secretion of pleiotrophin (PTN). BM stromal cells are the key source of PTN during steady-state hematopoiesis because its deletion from stromal cells, but not hematopoietic cells, osteoblasts, or ECs, depletes the HSC pool. Following myelosuppressive irradiation, PTN expression is increased in bone marrow endothelial cells (BMECs), and PTN+ ECs are more frequent in the niche. Moreover, deleting Ptn from ECs impairs HSC regeneration whereas Ptn deletion from BM stromal cells does not. These findings reveal dichotomous and complementary regulation of HSC maintenance and regeneration by BM stromal cells and ECs.


Assuntos
Medula Óssea/metabolismo , Proteínas de Transporte/metabolismo , Autorrenovação Celular , Citocinas/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Citocinas/deficiência , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Curr Oncol Rep ; 20(7): 52, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29713898

RESUMO

PURPOSE OF REVIEW: The goal of this review is to summarize current understanding of pharmacogenetics and pharmacogenomics in chemotherapy-induced cardiotoxicity. RECENT FINDINGS: Most of the studies rely on in vitro cytotoxic assays. There have been several smaller scale candidate gene approaches and a handful of genome-wide studies linking genetic variation to susceptibility to chemotherapy-induced cardiotoxicity. Currently, pharmacogenomic testing of all childhood cancer patients with an indication for doxorubicin or daunorubicin therapy for RARG rs2229774, SLC28A3 rs7853758, and UGT1A6*4 rs17863783 variants is recommended. There is no recommendation regarding testing in adults. There is clear evidence pointing to the role of pharmacogenetics and pharmacogenomics in cardiotoxicity susceptibility to chemotherapeutic agents. Larger scale studies are needed to further identify susceptibility markers and to develop pharmacogenomics-based risk profiling to improve quality of life and life expectancy in cancer survivors.


Assuntos
Antineoplásicos/efeitos adversos , Cardiotoxicidade/genética , Farmacogenética/métodos , Animais , Antineoplásicos/uso terapêutico , Cardiotoxicidade/etiologia , Daunorrubicina/efeitos adversos , Daunorrubicina/farmacologia , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Testes Genéticos , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único , Receptores do Ácido Retinoico/genética , Receptor gama de Ácido Retinoico
18.
J Clin Invest ; 127(11): 3921-3922, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035281

RESUMO

The hematopoietic system declines with age, resulting in decreased hematopoietic stem cell (HSC) self-renewal capacity, myeloid skewing, and immune cell depletion. Aging of the hematopoietic system is associated with an increased incidence of myeloid malignancies and a decline in adaptive immunity. Therefore, strategies to rejuvenate the hematopoietic system have important clinical implications. In this issue of the JCI, Poulos and colleagues demonstrate that infusions of bone marrow (BM) endothelial cells (ECs) from young mice promoted HSC self-renewal and restored immune cell content in aged mice. Additionally, delivery of young BM ECs along with HSCs following total body irradiation improved HSC engraftment and enhanced survival. These results suggest an important role for BM endothelial cells (ECs) in regulating hematopoietic aging and support further research to identify the rejuvenating factors elaborated by BM ECs that restore HSC function and the immune repertoire in aged mice.


Assuntos
Células Endoteliais , Células-Tronco Hematopoéticas , Animais , Células da Medula Óssea , Autorrenovação Celular , Endotélio , Camundongos
19.
Clin Cancer Res ; 23(12): e46-e53, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620004

RESUMO

Although the neurofibromatoses consist of at least three autosomal dominantly inherited disorders, neurofibromatosis 1 (NF1), neurofibromatosis 2 (NF2), and schwannomatosis, NF1 represents a multisystem pleiotropic condition very different from the other two. NF1 is a genetic syndrome first manifesting in childhood; affecting multiple organs, childhood development, and neurocognitive status; and presenting the clinician with often complex management decisions that require a multidisciplinary approach. Molecular genetic testing (see article for detailed discussion) is recommended to confirm NF1, particularly in children fulfilling only pigmentary features of the diagnostic criteria. Although cancer risk is not the major issue facing an individual with NF1 during childhood, the condition causes significantly increased malignancy risks compared with the general population. Specifically, NF1 is associated with highly elevated risks of juvenile myelomonocytic leukemia, rhabdomyosarcoma, and malignant peripheral nerve sheath tumor as well as substantial risks of noninvasive pilocytic astrocytoma, particularly optic pathway glioma (OPG), which represent a major management issue. Until 8 years of age, clinical assessment for OPG is advised every 6 to 12 months, but routine MRI assessment is not currently advised in asymptomatic individuals with NF1 and no signs of clinical visual pathway disturbance. Routine surveillance for other malignancies is not recommended, but clinicians and parents should be aware of the small risks (<1%) of certain specific individual malignancies (e.g., rhabdomyosarcoma). Tumors do contribute to both morbidity and mortality, especially later in life. A single whole-body MRI should be considered at transition to adulthood to assist in determining approaches to long-term follow-up. Clin Cancer Res; 23(12); e46-e53. ©2017 AACRSee all articles in the online-only CCR Pediatric Oncology Series.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Neurilemoma/genética , Neurofibromatoses/genética , Neurofibromatose 1/genética , Glioma do Nervo Óptico/genética , Neoplasias Cutâneas/genética , Adolescente , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/terapia , Criança , Humanos , Lactente , Imageamento por Ressonância Magnética , Neurilemoma/diagnóstico por imagem , Neurilemoma/terapia , Neurofibromatoses/diagnóstico por imagem , Neurofibromatoses/terapia , Neurofibromatose 1/diagnóstico por imagem , Neurofibromatose 1/terapia , Glioma do Nervo Óptico/diagnóstico por imagem , Glioma do Nervo Óptico/terapia , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/terapia
20.
Clin Cancer Res ; 23(12): e54-e61, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620005

RESUMO

The neurofibromatoses consist of at least three autosomal-dominant inherited disorders: neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), and schwannomatosis. For over 80 years, these conditions were inextricably tied together under generalized neurofibromatosis. In 1987, the localization of NF1 to chromosome 17q and NF2 (bilateral vestibular schwannoma) to 22q led to a consensus conference at Bethesda, Maryland. The two main neurofibromatoses, NF1 and NF2, were formally separated. More recently, the SMARCB1 and LZTR1 genes on 22q have been confirmed as causing a subset of schwannomatosis. The last 26 years have seen a great improvement in understanding of the clinical and molecular features of these conditions as well as insights into management. Childhood presentation of NF2 (often with meningioma) in particular predicts a severe multitumor disease course. Malignancy is rare in NF2, particularly in childhood; however, there are substantial risks from benign and low-grade central nervous system (CNS) tumors necessitating MRI surveillance to optimize management. At least annual brain MRI, including high-resolution images through the auditory meatus, and a clinical examination and auditory assessment are required from diagnosis or from around 10 to 12 years of age if asymptomatic. Spinal imaging at baseline and every 2 to 3 years is advised with more frequent imaging if warranted on the basis of sites of tumor involvement. The malignancy risk in schwannomatosis is not well defined but may include an increased risk of malignant peripheral nerve sheath tumor in SMARCB1 Imaging protocols are also proposed for SMARCB1 and LZTR1 schwannomatosis and SMARCE1-related meningioma predisposition. Clin Cancer Res; 23(12); e54-e61. ©2017 AACRSee all articles in the online-only CCR Pediatric Oncology Series.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Meningioma/genética , Neurilemoma/genética , Neurofibromatoses/genética , Proteína SMARCB1/genética , Neoplasias Cutâneas/genética , Fatores de Transcrição/genética , Adolescente , Criança , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Meningioma/diagnóstico , Meningioma/diagnóstico por imagem , Meningioma/epidemiologia , Neurilemoma/diagnóstico , Neurilemoma/diagnóstico por imagem , Neurilemoma/epidemiologia , Neurofibromatoses/diagnóstico , Neurofibromatoses/diagnóstico por imagem , Neurofibromatoses/epidemiologia , Neurofibromina 1/genética , Neurofibromina 2/genética , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA