Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(14): 3388-3402, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38818738

RESUMO

As a model organism for space biology experiments, Caenorhabditis elegans (C. elegans) has low demand for life support and strong resistance to unfavorable environments, making experimentation with C. elegans relatively easy and cost-effective. Previously, C. elegans has been flown in several spaceflight investigations, but there is still an urgent need for analytical platforms enabling on-orbit automated monitoring of multiple phenotypes of worms, such as growth and development, movement, changes of biomarkers, etc. To solve this problem, we presented a fully integrated microfluidic system (WormSpace µ-TAS) with an arrayed microfluidic chip (WormChip-4.8.1) and a replaceable microfluidic module (WormChip cartridge), which was compatible with the experimental facility on the China Space Station (CSS). By adopting technologies of programmed fluid control based on liquid medium CeMM as well as multi-function imaging with a camera mounted on a three-dimensional (3D) transportation stage, automated and long-term experimentation can be performed for on-chip multi-strain culturing and bright-field and fluorescence imaging of C. elegans at the single-worm level. The presented WormSpace µ-TAS enabled its successful application on the CSS, achieving flight launch of the sample unit (WormChip cartridge) at low temperature (controlled by a passive thermal case at 12 °C), automated 30-day cultivation of 4 strains of C. elegans, on-orbit monitoring of multiple phenotypes (growth and development, movement, and changes of fluorescent protein expression) at the single worm-level, on-chip fixation of animals at the end of the experiment and returning the fixed samples to earth. In summary, this study presented a verified microfluidic system and experimental protocols for automated on-chip multi-strain culturing and multi-function imaging of C. elegans at the single-worm level on the CSS. The WormSpace µ-TAS will provide a novel experimental platform for the study of biological effects of space radiation and microgravity, and for the development of protective drugs.


Assuntos
Caenorhabditis elegans , Dispositivos Lab-On-A-Chip , Animais , China , Voo Espacial , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Automação
2.
J Environ Manage ; 323: 116171, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261975

RESUMO

Groundwater is the foremost water source of agricultural irrigation areas in northern China. However, the problem from excessive geogenic fluoride and anthropogenic nitrate in groundwater and its potential health risks are often neglected. This paper aims to identify the health threats, water quality and hydrochemistry in Weibei Plain, northern China. A total of 50 water samples collected in May 2021 were assessed by hydrogeochemical analysis, the entropy weight water quality index method and probabilistic human health risk assessment based on Monte Carlo stochastic simulation. The results showed that the hydrochemical type of surface water and groundwater was mainly SO4·Cl-Ca·Mg type. The rock weathering and cation exchanges were found to the important processes influencing hydrochemistry. The quality of surface water was higher than that of groundwater, with Class IV and Class V groundwater samples concentrated in the northwest of the study area. The F- concentration in groundwater samples generally exceeded the drinking water standard, which mainly came from mineral dissolution affected by excessive irrigation. Nitrate pollution in groundwater has regional characteristics, mainly from agricultural activities. Long-term use of groundwater might bring risks to residents' health, because more than 65% and 23% of groundwater samples exceeded the acceptable non-carcinogenic risk limits of F- and NO3- to children, respectively. Considering the uncertainty of model parameters, children will have a probability of more than 46.9% and 12.6% to face F- and NO3- risks in groundwater. Compared with NO3-, the high concentration of F- in groundwater posed a higher threat to human health, and children faced higher risks. Compared with the deterministic method, the stochastic simulation can more accurately reflect health risks. The findings of this study can help policymakers devise strategies to ensure a safe supply of domestic water.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Criança , Humanos , Nitratos/análise , Fluoretos/análise , Água Potável/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água Subterrânea/análise , China , Minerais/análise
3.
ACS Omega ; 7(26): 22447-22455, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811918

RESUMO

The development of a continuous hydrolysis process of titanium sulfate is an innovation to the traditional production process of titanium dioxide by the sulfuric acid process. In the experiment, a microchannel reactor was designed, and the hydrolysis rate of titanium sulfate, the particle size, and particle size distribution of metatitanic acid agglomerates were used as indicators to investigate the effect of operating conditions on the continuous hydrolysis of titanium sulfate. The results have shown that as the amount of dilution water increased, the hydrolysis rate of titanium sulfate decreased, and the particle size of primary aggregates of metatitanic acid increased from 39 to 54 nm. As the alkali mass concentration of dilution water increased, the hydrolysis rate of titanyl sulfate increased, and the particle size of primary aggregates of metastatic acid first decreased and then increased, and the particle size range was 40-48 nm. As the flow rate increased, the hydrolysis rate of titanyl sulfate increased, and the particle size of primary aggregates of metatitanic acid dropped from 59 to 43 nm. Compared with the batch hydrolysis operation, the continuous process has stronger anti-disturbance ability, significantly shorter operation time of the reaction section, and narrower particle size distribution of the product metatitanic acid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA