Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(29): e2301172, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148528

RESUMO

The shift-current photovoltaics of group-IV monochalcogenides has been predicted to be comparable to those of state-of-the-art Si-based solar cells. However, its exploration has been prevented from the centrosymmetric layer stacking in the thermodynamically stable bulk crystal. Herein, the non-centrosymmetric layer stacking of tin sulfide (SnS) is stabilized in the bottom regions of SnS crystals grown on a van der Waals substrate by physical vapor deposition and the shift current of SnS, by combining the polarization angle dependence and circular photogalvanic effect, is demonstrated. Furthermore, 180° ferroelectric domains in SnS are verified through both piezoresponse force microscopy and shift-current mapping techniques. Based on these results, an atomic model of the ferroelectric domain boundary is proposed. The direct observation of shift current and ferroelectric domains reported herein paves a new path for future studies on shift-current photovoltaics.

2.
ACS Appl Mater Interfaces ; 14(17): 19928-19937, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442622

RESUMO

Searching for the counterpart of well-developed two-dimensional (2D) n-type field effect transistors (FETs) is indispensable for complementary logic circuit applications for 2D devices. Although SnS is regarded as a potential candidate for high-performance p-type FETs, recent experiments only show poor results deviating from the theoretically predicted high mobility. In this research, the serious performance degradation due to the surface oxidation of SnS, which commonly occurs in most 2D materials, is addressed through surface oxide conversion using highly reactive Ti. In this conversion process, which is confirmed by systematic characterization, the reduction of SnS surface oxide is accompanied by the formation of functional titanium oxide, which works as both a conductive intermediate layer to improve the contact property and a buffer layer of the high-k top gate insulator at the channel region. Consequently, a record-high field effect mobility of 87.4 cm2 V-1 s-1 in SnS p-type FETs is achieved. The surface oxide conversion method applied here is consistent with our previous thermodynamic prediction, and this novel technique can be widely introduced to all 2D materials that are vulnerable to oxidation and facilitate the future development of 2D devices.

3.
ACS Appl Mater Interfaces ; 13(36): 43282-43289, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34478258

RESUMO

Surface oxidation is an unneglectable problem for 2D semiconductors because it hinders the practical application of 2D material-based devices. In this research, the oxidation of layered materials is investigated by a thermodynamic approach to verify their oxidation tendency. It was found that almost all 2D materials are thermodynamically unstable in the presence of oxygen at room temperature. Two potential solutions for surface oxidation are proposed in this work: (i) the conversion of the surface oxides to functional oxides through the deposition of active metals and (ii) the recovery of original 2D materials from the surface oxides by 2D material heterostructure formation with the same chalcogen group. Supported by thermodynamic calculations, both approaches are feasible to ameliorate the surface oxides of 2D materials by the appropriate selection of metals for deposition or 2D materials for heterostructure formation. Thermodynamic data of 64 elements and 75 2D materials are included and compared in this research, which can improve gate insulator or electrode contact material selection in 2D devices to solve the surface oxidation issue. For instance, yttrium and titanium are good candidates for surface oxide conversion, while zirconium and hafnium chalcogenide can trigger the recovery of original 2D materials from their surface oxides. The systematic diagrams presented in this work can serve as a guideline for considering surface oxidation in future device fabrication from various 2D materials.

4.
Nanotechnology ; 32(17): 175603, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33455957

RESUMO

Textured growth of ZnO nanorods with no restriction of the substrate material is beneficial to their applications. The approaches to grow ZnO nanorods with texture are based on preparing suitable surface structure on the growth substrate, e.g. using a crystalline substrate with a specific surface structures or pre-depositing seed layers by high-temperature annealing of precursors. In the aqueous nutrient solution of the chemical bath deposition (CBD) process for ZnO growth, the concentration of Zn2+ ions at the extended hydrophobic surface is sufficiently high for forming self-assembly nuclei with a preferred orientation, resulting in the subsequent textured growth of ZnO nanorods. In this research, the hydrophobic surface is prepared by modifying Si surface with a self-assembly octadecyltrimethoxysilane (OTMS) monolayer. The formation mechanism of the nuclei on this hydrophobic surface for the textured growth of ZnO nanorods is investigated. It is shown that the nuclei form at the beginning of the CBD process and later transform into the Wurtzite structure to seed ZnO growth. An alternative approach to prepare seed layers is therefore involved in the aqueous CBD process, which is applicable to a range of hydrophobic substrates for textured growth of ZnO nanorods.

5.
ACS Appl Mater Interfaces ; 10(39): 33450-33456, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30191709

RESUMO

The electrical contact to two-dimensional (2D) semiconductor materials is decisive to the electronic performance of 2D semiconductor field-effect devices (FEDs). The presence of a Schottky barrier often leads to a large contact resistance, which seriously limits the channel conductance and carrier mobility measured in a two-terminal geometry. In contrast, Ohmic contact is desirable and can be achieved by the presence of a nonrectifying or tunneling barrier. Here, we demonstrate that a nonrectifying barrier can be realized by contacting indium (In), a low work function metal, with layered InSe because of a favorable band alignment at the In-InSe interface. The nonrectifying barrier is manifested by Ohmic contact behavior at T = 2 K and a low barrier height, ΦB = 50 meV. This Ohmic contact enables demonstration of an on-current as large as 410 µA/µm, which is among the highest values achieved in FEDs based on layered semiconductors. A high electron mobility of 3700 and 1000 cm2/V·s is achieved with the two-terminal In-InSe FEDs at T = 2 K and room temperature, respectively, which can be attributed to enhanced quality of both conduction channel and the contacts. The improvement in the contact quality is further proven by an X-ray photoelectron spectroscopy study, which suggests that a reduction effect occurs at the In-InSe interface. The demonstration of high-performance In-InSe FEDs indicates a viable interface engineering method for next-generation, 2D semiconductor-based electronics.

6.
ACS Nano ; 11(7): 7362-7370, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28661128

RESUMO

In search of high-performance field-effect transistors (FETs) made of atomic thin semiconductors, indium selenide (InSe) has held great promise because of its high intrinsic mobility and moderate electronic band gap (1.26 eV). Yet the performance of InSe FETs is decisively determined by the surface oxidation of InSe taking place spontaneously in ambient conditions, setting up a mobility ceiling and causing an uncontrollable current hysteresis. Encapsulation by hexagonal boron nitride (h-BN) has been currently used to cope with this deterioration. Here, we provide insights into the role of surface oxides played in device performance and introduce a dry-oxidation process that forms a dense capping layer on top, where InSe FETs exhibit a record-high two-probe mobility of 423 cm2/V·s at room temperature and 1006 cm2/V·s at liquid nitrogen temperature without the use of h-BN encapsulation or high-κ dielectric screening. Ultrahigh on/off current ratio of >108 and current density of 365 µA/µm can be readily achieved without elaborate engineering of drain/source contacts or gating technique. Thickness-dependent device properties are also studied, with optimized performance shown in FETs comprising of 13 nm thick InSe. The high performance of InSe FETs with ultrathin dry oxide is attributed to the effective unpinning of the Fermi level at the metal contacts, resulting in a low Schottky barrier height of 40 meV in an optimized channel thickness.

7.
Adv Mater ; 27(47): 7809-15, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26509339

RESUMO

Ultrastrong and precisely controllable n-type photoinduced doping at a graphene/TiOx heterostructure as a result of trap-state-mediated charge transfer is demonstrated, which is much higher than any other reported photodoping techniques. Based on the strong light-matter interactions at the graphene/TiOx heterostructure, precisely controlled photoinduced bandgap opening of a bilayer graphene device is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA