Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169627, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38157894

RESUMO

Large amounts of microplastics accumulated in the soil of agricultural fields with the rapid development of mulch agriculture. The enrichment of microplastics endangered the growth of crops and food security, and it also posed ecological risks. In this study, we investigated microplastics in a typical agriculture area of Yan' an City, in the loess hilly gully area of China. The characteristics of microplastics including their abundances, sizes, and types were measured through laser direct infrared spectrometer. The potential sources of microplastics were analyzed and the risk of soil microplastic pollution was evaluated. It was elaborated that the average abundances of microplastics in soil, water, and fertilizer were 4505 ± 435 n·kg-1, 91 ± 27 n·L-1, and 39,629 ± 10,114 n·kg-1, respectively. Microplastics with particle sizes < 100 µm accounted for >90 %. The smaller the particle size, the higher the content of microplastics. The top three polymers were polyethylene (PE, 37.4 %), polyethylene terephthalate (PET, 15.0 %), and ethylene vinyl acetate (EVA, 8.9 %), respectively. Agricultural mulch, plastic film, domestic waste, surface water irrigation, and organic compost were probably the potential sources of soil microplastics. The ecological risk evaluation showed that overall sampling sites had a minor ecological risk of microplastic pollution based on their abundance, while the polymer type showed a relatively high ecological risk for the investigated agricultural soils. Polyvinylchloride (PVC) and polymethylmethacrylate (PMMA) contribute considerably to the ecological risk, and their inputs to the farmland environment should be strictly limited. There was no significant carcinogenic risk to humans. This study would provide the basic reference for the current situation and risk assessment of farmland soil microplastics pollution in the loess hilly gully area of China.

2.
J Hazard Mater ; 322(Pt A): 95-104, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27041441

RESUMO

Due to the widespread application of engineered nanoparticles, their potential risk to ecosystems and human health is of growing concern. Silver nanoparticles (Ag NPs) are one of the most extensively produced NPs. Thus, this study aims to develop a method to detect Ag NPs in different aquatic systems. In complex media, three emerging techniques are compared, including hydrodynamic chromatography (HDC), asymmetric flow field flow fractionation (AF4) and single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS). The pre-treatment procedure of centrifugation is evaluated. HDC can estimate the Ag NP sizes, which were consistent with the results obtained from DLS. AF4 can also determine the size of Ag NPs but with lower recoveries, which could result from the interactions between Ag NPs and the working membrane. For the SP-ICP-MS, both the particle size and concentrations can be determined with high Ag NP recoveries. The particle size resulting from SP-ICP-MS also corresponded to the transmission electron microscopy observation (p>0.05). Therefore, HDC and SP-ICP-MS are recommended for environmental analysis of the samples after our established pre-treatment process. The findings of this study propose a preliminary technique to more accurately determine the Ag NPs in aquatic environments and to use this knowledge to evaluate the environmental impact of manufactured NPs.


Assuntos
Nanopartículas Metálicas/análise , Prata/análise , Águas Residuárias/análise , Espectrometria de Massas/métodos , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Prata/química
3.
J Hazard Mater ; 286: 285-90, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25590822

RESUMO

The wide distribution of bisphenol A (BPA) in the environment is problematic because of its endocrine-disrupting characteristics and toxicity. Developing cost-effective remediation methods for wide implementation is crucial. Therefore, this study investigated the BPA biodegradation ability of various microorganisms from river sediment. An acclimated microcosm completely degraded 10 mg L(-1) BPA within 28 h and transformed the contaminant into several metabolic intermediates. During the degradation process, the microbial compositions fluctuated and the final, predominant microorganisms were Pseudomonas knackmussii and Methylomonas clara. From the original river sediment, we isolated four distinct strains, which deplete the BPA over 7-9 days. They were all genetically similar to P. knackmussii. The degradation ability of mixed strains was higher than that of single strain but was far less than that of the microbial consortium. The novel BPA degradation ability of P. knackmussii and its role in the decomposing microcosm were first demonstrated. Our results revealed that microbial diversity plays a crucial role in pollutant decomposition.


Assuntos
Compostos Benzidrílicos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Fenóis/isolamento & purificação , Rios/química , Poluentes Químicos da Água/isolamento & purificação , Biodegradação Ambiental , Cinética , Methylomonas/crescimento & desenvolvimento , Pseudomonas/crescimento & desenvolvimento , Rios/microbiologia , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA