Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(8): 7368-7377, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36872995

RESUMO

We have prepared CuO-derived electrocatalysts on a graphitic carbon nitride (g-C3N4) nanosheet support for the electrochemical carbon dioxide reduction reaction (CO2RR). Highly monodisperse CuO nanocrystals made by a modified colloidal synthesis method serve as the precatalysts. We use a two-stage thermal treatment to address the active site blockage issues caused by the residual C18 capping agents. The results show that the thermal treatment effectively removed the capping agents and increased the electrochemical surface area. During the process, the residual oleylamine molecules incompletely reduced CuO to a Cu2O/Cu mixed phase in the first stage of thermal treatment, and the following treatment in forming gas at 200 °C completed the reduction to metallic Cu. The CuO-derived electrocatalysts show different selectivities over CH4 and C2H4, and this might be due to the synergistic effects of Cu-g-C3N4 catalyst-support interaction, varied particle sizes, dominant surface facets, and catalyst ensemble. The two-stage thermal treatment enables sufficient capping agent removal, catalyst phase control, and CO2RR product selection, and with precise controls of the experimental parameters, we believe that this will help to design and fabricate g-C3N4-supported catalyst systems with narrower product distribution.

2.
Anal Methods ; 14(9): 962, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35244118

RESUMO

Retraction of 'Synergistic action of star-shaped Au/Ag nanoparticles decorated on AgFeO2 for ultrasensitive SERS detection of a chemical warfare agent on real samples' by Nazar Riswana Barveen et al., Anal. Methods, 2020, 12, 1342-1352, DOI: 10.1039/C9AY02347J.

3.
Mikrochim Acta ; 189(1): 16, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873648

RESUMO

As a novel two-dimensional (2D) material, metal carbide (MXene) has been identified as a hotspot research topic in the field of surface-enhanced Raman spectroscopy (SERS). Herein, we report the increment of SERS activity of titanium carbide (TiC) by incorporation of gold nanoparticles (Au NPs) by a facile photoreduction process for the detection of antipsychotic drug. TiC anchored with Au NPs produce a remarkable SERS enhancement by the synergistic action of chemical and electromagnetic mechanisms. The hotspots are formed in the nanometer-scale gaps between Au NPs on the TiC surface for the effective interaction with probe molecules. The proposed TiC/Au-NPs SERS substrate was employed for the detection of chlorpromazine (CPZ) with the wide linear range of 10-1-10-10 M and the ultra-low limit of detection of 3.92 × 10-11 M. Besides, the SERS effect of the optimized TiC/Au-NPs for the 532 nm excitation exhibits the enhancement factor in the order of 109 with the relative standard deviation of < 13% for the uniformity and < 8.80% for the reproducibility. To ensure the practical feasibility of the proposed TiC/Au-NPs SERS substrate, the spike and recovery method was used for the detection of CPZ in human biological fluids like urine and saliva. This work can open up a new approach to improve the SERS activity of MXene-based SERS substrate for practical applications, especially the determination of antipsychotic drugs in environmental pollution management.

4.
Chemosphere ; 275: 130115, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33984904

RESUMO

Aquaculture and farming industries have been seriously threatened by the illegal use of antibiotics as feed-additives to benefit the animal growth. Although various conventional chemical sensing approaches have been widely explored for the trace-level detection of antibiotics, the effective and accurate monitoring techniques are still highly demanded. Herein, we propose a novel surface-enhanced Raman scattering (SERS) substrate with the heterogeneous integration of silver nanoparticles (Ag NPs) on silver vanadate nanorods (ß-AgVO3 NRs) for the ultrasensitive detection of popular antibiotic, chloramphenicol (CAP). The photochemical decoration of Ag NPs on the surface of ß-AgVO3 NRs remarkably enhances the Raman signal intensity of CAP molecules by the synergistic action of the mechanisms of electromagnetic and chemical enhancement. The structural features of Ag-NPs@ß-AgVO3-NRs favor the formation of hotspots at the interface between NPs and NRs by enhanced surface area and numerous active sites for the interaction with CAP molecules. The SERS measurement of CAP molecules on the Ag-NPs@ß-AgVO3-NRs shows a trace-level limit of detection (10-10 M), high uniformity (5.29%), good reproducibility (3.89%), and high analytical enhancement factor (2.05 × 108). The proposed SERS substrate possesses excellent detection ability in monitoring real samples like tap water, milk and eye drops.


Assuntos
Nanopartículas Metálicas , Nanotubos , Animais , Cloranfenicol , Reprodutibilidade dos Testes , Prata , Compostos de Prata , Análise Espectral Raman , Vanadatos
5.
ACS Omega ; 5(25): 14860-14867, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32637760

RESUMO

Gold nanohelices (AuNHs) are synthesized using surfactant-assisted seed-mediated growth in an aqueous solution. AuNHs with diameters and lengths of 30-150 nm and several micrometers, respectively, are grown in a reaction carried out at 15 °C for 20 h by adding poly(ethylene glycol)(12)tridecyl ether, polyvinylpyrrolidone, and cetyltrimethylammonium bromide as the capping agents in an HAuCl4(aq) solution. With the addition of gold nanoparticles (AuNPs) in the reaction, the yield of the helical products is considerably increased, which indicates that AuNPs behave as the seeds for AuNH growth. The growth routes of AuNHs in the system are investigated by transmission electron microscopy measurements. Finite-difference time-domain (FDTD) simulations show that total extinction of the AuNH at 660 and 570 nm is dominantly influenced by strong e-field enhancement and the scattering of light incidence. In a practical application, surface-enhanced Raman scattering (SERS) measurements are conducted using AuNHs as the substrates and 4-mercaptobenzoic acid as the probe. A detection limit of 20 ppb is acquired using a micro-Raman spectrometer using a 633 nm He-Ne laser with a power of 3.35 mW which corresponds with the FDTD simulation results and reveals that AuNHs are superior SERS templates with resonance tuning ability in consequence of their unique helical architectures.

6.
Anal Methods ; 12(10): 1342-1352, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35178542

RESUMO

It is a great challenge to design and fabricate a cost-effective surface-enhanced Raman spectroscopy (SERS) substrate with excellent reproducibility and sensitivity for reliable environmental analysis. In this work, we have synthesized silver ferrite (AgFeO2) interlinked with star-shaped gold/silver (Au/Ag) bimetallic (BM) nanoparticles (NPs) by a simple physical method for the effective detection of an acetylcholinesterase (AchE) inhibitor, paraoxon ethyl (PE). The successful construction of AgFeO2@Au/Ag NPs was confirmed by UV-Vis spectroscopy, X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. The enhancement of the SERS signal is achieved by the synergistic effect of the charge transfer mechanism and electromagnetic mechanism. The Raman peak centered at 1357 cm-1 was selected as an ideal peak for the quantitative analysis of PE. The AgFeO2@Au/Ag NPs can detect PE down to 1 × 10-8 M with a high analytical enhancement factor of 3.53 × 106 and excellent uniformity, as determined randomly from 14 spots (relative standard deviation, RSD, <15%). The recovery values of PE in tap water and tomato juice were from 93.16% to 99.16%. All these results suggest that our proposed SERS substrate has promising potential for the detection of PE. The proposed simple strategy for PE detection by SERS using AgFeO2@Au/Ag NPs paves the way for future reliable environmental analysis and real sample monitoring.

7.
ACS Appl Mater Interfaces ; 11(1): 84-95, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30500151

RESUMO

Photodynamic therapy (PDT) is a noninvasive medical technology that has been applied in cancer treatment where it is accessible by direct or endoscope-assisted light irradiation. To lower phototoxicity and increase tissue penetration depth of light, great effort has been focused on developing new sensitizers that can utilize red or near-infrared (NIR) light for the past decades. Lanthanide-doped upconversion nanoparticles (UCNPs) have a unique property to transduce NIR excitation light to UV-vis emission efficiently. This property allows some low-cost, low-toxicity, commercially available visible light sensitizers, which originally are not suitable for deep tissue PDT, to be activated by NIR light and have been reported extensively in the past few years. However, some issues still remain in the UCNP-assisted PDT platform such as colloidal stability, photosensitizer loading efficiency, and accessibility for targeting ligand installation, despite some advances in this direction. In this study, we designed a facile phospholipid-coated UCNP method to generate a highly colloidally stable nanoplatform that can effectively load a series of visible light sensitizers in the lipid layers. The loading stability and singlet oxygen generation efficiency of this sensitizer-loaded lipid-coated UCNP platform were investigated. We also have demonstrated the enhanced cellular uptake efficiency and tumor cell selectivity of this lipid-coated UCNP platform by changing the lipid dopant. On the basis of the evidence of our results, the lipid-complexed UCNP nanoparticles could serve as an effective photosensitizer carrier for NIR light-mediated PDT.


Assuntos
Raios Infravermelhos , Lipídeos , Nanopartículas , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes , Oxigênio Singlete/metabolismo , Animais , Células HeLa , Humanos , Lipídeos/química , Lipídeos/farmacologia , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Ratos
8.
PLoS One ; 13(7): e0199620, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29965977

RESUMO

Self-organized dendritic architecture is of fundamental importance and its application can be used in many natural and industrial processes. Nanopost arrays are usually used in the applications of reflecting grating and changing the material surface wettability. However, in recent research, it is found that nanopost arrays can be fabricated as passive components to induce the dendritic self-organizaed hierarchical architectures. Via this simplified Phase-Field based finite element simulation, the surface dendritic self-organized architecture morphology and expanding speed in the growing path can be controlled by nanopost structures. In addition, nanopost array arrangement on the surface affects the hierarchal architecture branching distribution. Finally, with an external applied force introduced to the system, it enables the nanopost as an active component. It is found that nanopost surroundings significantly impact the final distribution of dendritic architectures which is qualitatively in agreement with experiments and induce these dendritic architectures to form assigned character patterns after the external driving forces are introduced into the system. This novel study can fundamentally study the dynamic physics of dendritic self-organized architecutes provide an indicator for the development of smart self-organized architecture, and a great opportunity for the creation of large-scale hierarchical structures.


Assuntos
Simulação por Computador , Modelos Teóricos , Algoritmos
9.
J Vis Exp ; (126)2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28892036

RESUMO

Upconversion nanoparticle (UCNP)-mediated photoactivation is a new approach to remotely control bioeffectors with much less phototoxicity and with deeper tissue penetration. However, the existing instrumentation on the market is not readily compatible with upconversion application. Therefore, modifying the commercially available instrument is essential for this research. In this paper, we first illustrate the modifications of a conventional fluorimeter and fluorescence microscope to make them compatible for photon upconversion experiments. We then describe the synthesis of a near-infrared (NIR)-triggered caged protein kinase A catalytic subunit (PKA) immobilized on a UCNP complex. Parameters for microinjection and NIR photoactivation procedures are also reported. After the caged PKA-UCNP is microinjected into REF52 fibroblast cells, the NIR irradiation, which is significantly superior to conventional UV irradiation, efficiently triggers the PKA signal transduction pathway in living cells. In addition, positive and negative control experiments confirm that the PKA-induced pathway leading to the disintegration of stress fibers is specifically triggered by NIR irradiation. Thus, the use of protein-modified UCNP provides an innovative approach to remotely control light-modulated cellular experiments, in which direct exposure to UV light must be avoided.


Assuntos
Nanopartículas/metabolismo , Transdução de Sinais/fisiologia , Fotólise
10.
ACS Nano ; 9(7): 7041-51, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26102426

RESUMO

Photoactivatable (caged) bioeffectors provide a way to remotely trigger or disable biochemical pathways in living organisms at a desired time and location with a pulse of light (uncaging), but the phototoxicity of ultraviolet (UV) often limits its application. In this study, we have demonstrated the near-infrared (NIR) photoactivatable enzyme platform using protein kinase A (PKA), an important enzyme in cell biology. We successfully photoactivated PKA using NIR to phosphorylate its substrate, and this induced a downstream cellular response in living cells with high spatiotemporal resolution. In addition, this system allows NIR to selectively activate the caged enzyme immobilized on the nanoparticle surface without activating other caged proteins in the cytosol. This NIR-responsive enzyme-nanoparticle system provides an innovative approach to remote-control proteins and enzymes, which can be used by researchers who need to avoid direct UV irradiation or use UV as a secondary channel to turn on a bioeffector.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/efeitos da radiação , Enzimas Imobilizadas/efeitos da radiação , Raios Infravermelhos , Nanopartículas/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Enzimas Imobilizadas/metabolismo , Fibroblastos/metabolismo , Nanopartículas/química , Ratos
11.
J Phys Chem B ; 110(42): 20756-8, 2006 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17048882

RESUMO

Direct nanopatterning of a number of high-melting-temperature molecules has been systematically investigated by dip-pen nanolithography (DPN). By tuning DPN experimental conditions, all of the high-melting-temperature molecules transported smoothly from the atomic force microscope (AFM) tip to the surface at room temperature without tip preheating. Water meniscus formation between the tip and substrate is found to play a critical role in patterning high-melting-temperature molecules. These results show that heating an AFM probe to a temperature above the ink's melting temperature is not a prerequisite for ink delivery, which extends the current "ink-substrate" combinations available to DPN users.


Assuntos
Tinta , Nanotecnologia , Microscopia de Força Atômica , Conformação Molecular , Transição de Fase , Temperatura
12.
J Phys Chem B ; 110(24): 11818-22, 2006 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-16800483

RESUMO

Porous carbon materials with pore sizes from 3 to 200 nm were synthesized by reacting hexafluorobenzene with Na liquid at 623 K. NaF crystals, a byproduct formed in the reaction, acted as nanotemplate to assist the pore formation. By employing hexafluorobenzene to react with Na incorporated within the channels (diameter 200 nm) of anodized aluminum oxide (AAO) membranes at 323-623 K, the carbon material can be fabricated into aligned porous nanotube arrays (ca. 250 nm in diameter, ca. 20 nm in wall thickness, ca. 0.06 mm in length, and ca. 3-90 nm in pore diameter). These materials were characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray energy dispersive spectroscopy, electron diffraction, thermal gravimetric analysis, and nitrogen physical adsorption experiments.

13.
Langmuir ; 22(1): 10-2, 2006 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-16378390

RESUMO

C(6)F(6) vapor is employed to react with CaC(2) and Mg(3)N(2) to grow CaF(2)/a-C and Mg(2)F(2)/a-C core/shell nanowires (tens of micrometers in length, tens to hundreds of nanometers in wire diameter, and tens of nanometers in core diameter), respectively, in high yields. The growth mechanism is proposed to proceed via a reaction at the interface of the vapor and solid reactants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA