Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Cell Biol Int ; 48(2): 216-228, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081783

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC) compared to other BC subtypes in clinical settings. Currently, there are no effective therapeutic strategies for TNBC treatment. Therefore, there is an urgent need to identify suitable biomarkers or therapeutic targets for TNBC patients. Thrombomodulin (TM) plays a role in cancer progression and metastasis in many different cancers. However, the role of TM in TNBC is not yet fully understood. First, silenced-TM in MDA-MB-231 cells caused an increase in proliferative and metastatic activity. In contrast, overexpression of TM in Hs578T cells caused a reduction in proliferation, invasion, and migration rate. Using RNA-seq analysis, we found that Integrin beta 3 (ITGB3) expression may be a downstream target of TM. Furthermore, we found an increase in ITGB3 levels in TM-KD cells by QPCR and western blot analysis but a decrease in ITGB3 levels in TM-overexpressing cells. We found phospho-smad2/3 levels were increased in TM-KD cells but decreased in TM-overexpressing cells. This implies that TM negatively regulates ITGB3 levels through the activation of the smad2/3 pathway. Silencing ITGB3 in TM-KD cells caused a decrease in proliferation and migration. Finally, we found that higher ITGB3 levels were correlated with poor overall survival and relapse-free survival in patients with TNBC. Our results indicated a novel regulatory relationship between TM and ITGB3 in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Western Blotting , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Integrina beta3/genética , Trombomodulina/genética , Neoplasias de Mama Triplo Negativas/metabolismo
2.
J Clin Med ; 12(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38137759

RESUMO

The adoption of neoadjuvant concurrent chemoradiotherapy (CCRT) has reshaped the therapeutic landscape, but response prediction remains challenging. This study investigates the interaction between pre-CCRT carcinoembryonic antigen (CEA) and post-CCRT hemoglobin (Hb) levels in predicting the response of locally advanced rectal cancer (LARC) to CCRT. Retrospective data from 93 rectal cancer patients receiving neoadjuvant CCRT were analyzed. Univariate analyses assessed clinical factors associated with tumor regression grade (TRG) and T-stage outcomes. Machine learning identified predictive biomarkers. Interaction effects between CEA and Hb were explored through subgroup analyses. Post-CCRT Hb varied between pre-CCRT CEA groups. The interaction between pre-CCRT CEA and post-CCRT Hb influenced TRG. Males with normal pre-CCRT CEA and anemia showed better treatment responses. Females with elevated pre-CCRT CEA and post-CCRT anemia exhibited poorer responses. The interaction effect between them was significant, indicating that their relationship with TRG was not additive. Inflammatory biomarkers, WBC, neutrophil count, and post-CCRT platelet level correlated with CCRT response. Contrasting with previous findings, anemia was a predictor of better treatment response in males with normal pre-CCRT CEA. The interaction between pre-CCRT CEA and post-CCRT Hb levels predicts the response of LARC to CCRT. CEA, Hb, and sex should be considered when assessing treatment response. Inflammatory biomarkers contribute to response prediction. Understanding these complex relationships can enhance personalized treatment approaches in rectal cancer patients.

3.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894942

RESUMO

Colorectal cancer (CRC) ranks among the most prevalent forms of cancer globally, and its late-stage survival outcomes are less than optimal. A more nuanced understanding of the underlying mechanisms behind CRC's development is crucial for enhancing patient survival rates. Existing research suggests that the expression of Cell Wall Biogenesis 43 C-Terminal Homolog (CWH43) is reduced in CRC. However, the specific role that CWH43 plays in cancer progression remains ambiguous. Our research seeks to elucidate the influence of CWH43 on CRC's biological behavior and to shed light on its potential as a therapeutic target in CRC management. Utilizing publicly available databases, we examined the expression levels of CWH43 in CRC tissue samples and their adjacent non-cancerous tissues. Our findings indicated lower levels of both mRNA and protein expressions of CWH43 in cancerous tissues. Moreover, we found that a decrease in CWH43 expression correlates with poorer prognoses for CRC patients. In vitro experiments demonstrated that the suppression of CWH43 led to increased cell proliferation, migration, and invasiveness, while its overexpression had inhibitory effects. Further evidence from xenograft models showed enhanced tumor growth upon CWH43 silencing. Leveraging data from The Cancer Genome Atlas (TCGA), our Gene Set Enrichment Analysis (GSEA) indicated a positive relationship between low CWH43 expression and the activation of the epithelial-mesenchymal Transition (EMT) pathway. We conducted RNA sequencing to analyze gene expression changes under both silenced and overexpressed CWH43 conditions. By identifying core genes and executing KEGG pathway analysis, we discovered that CWH43 appears to have regulatory influence over the TTK-mediated cell cycle. Importantly, inhibition of TTK counteracted the tumor-promoting effects caused by CWH43 downregulation. Our findings propose that the decreased expression of CWH43 amplifies TTK-mediated cell cycle activities, thus encouraging tumor growth. This newly identified mechanism offers promising avenues for targeted CRC treatment strategies.


Assuntos
Neoplasias Colorretais , Humanos , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/metabolismo
4.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446127

RESUMO

CRC is the second leading cause of cancer-related death. The complex mechanisms of metastatic CRC limit available therapeutic choice. Thus, identifying new CRC therapeutic targets is essential. Moesin (MSN), a member of the ezrin-radixin-moesin family, connects the cell membrane to the actin-based cytoskeleton and regulates cell morphology. We investigated the role of MSN in the progression of CRC. GENT2 and oncomine were used to study MSN expression and CRC patient outcomes. MSN-specific shRNAs or MSN-overexpressed plasmid were used to establish MSN-KD and MSN overexpressed cell lines, respectively. SRB, migration, wound healing, and flow cytometry were used to test cell survival and migration. Propidium iodide and annexin V stain were used to analyze the cell cycle and apoptosis. MSN expression was found to be higher in CRC tissues than in normal tissues. Higher MSN expression is associated with poor overall survival, disease-free survival, and relapse-free survival rates in CRC patients. MSN silencing inhibits cell proliferation, adhesion, migration, and invasion in vitro, whereas MSN overexpression accelerates cell proliferation, adhesion, migration, and invasion. RNA sequencing was used to investigate differentially expressed genes, and RUNX2 was discovered as a possible downstream target for MSN. In CRC patients, RUNX2 expression was significantly correlated with MSN expression. We also found that MSN silencing decreased cytoplasmic and nuclear ß-catenin levels. Additionally, pharmacological inhibition of ß-catenin in MSN-overexpressed cells led to a reduction of RUNX2, and activating ß-catenin signaling by inhibiting GSK3ß rescued the RUNX2 downregulation in MSN-KD cells. This confirms that MSN regulates RUNX2 expression via activation of ß-catenin signaling. Finally, our result further determined that RUNX2 silencing reduced the ability of MSN overexpression cells to proliferate and migrate. MSN accelerated CRC progression via the ß-catenin-RUNX2 axis. As a result, MSN holds the potential to become a new target for CRC treatment.


Assuntos
Neoplasias Colorretais , beta Catenina , Humanos , Linhagem Celular Tumoral , beta Catenina/genética , beta Catenina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Movimento Celular/genética , Neoplasias Colorretais/patologia , Proliferação de Células/genética , Via de Sinalização Wnt/genética , Regulação Neoplásica da Expressão Gênica
5.
Biomedicines ; 11(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37509438

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the deadliest cancers worldwide and long-term survival is not guaranteed in metastatic disease despite current multidisciplinary therapies. A new compound 2,3,5,4'-Tetrahydroxystilbene (TG1), derived from THSG (2,3,5,4'-Tetrahydroxystilbene-2-O-ß-D-Glucoside), has been developed, and its anticancer ability against CRC is verified in this study. METHODS: HCT116, HT-29, and DLD-1 were treated with TG1 and the IC50 was measured using a sulforhodamine B assay. A Xenograft mouse model was used to monitor tumor growth. Apoptosis and autophagy, induced by TG1 in CRC cells, were examined. RNA-sequencing analysis of CRC cells treated with TG1 was performed to discover underlying pathways and mechanisms. RESULTS: The results demonstrated that treatment with TG1 inhibited CRC proliferation in vitro and in vivo and induced apoptotic cell death, which was confirmed by Annexin V-FITC/PI staining and Western blotting. Additionally, TG1 treatment increased the level of autophagy in cells. RNA-sequencing and GSEA analyses revealed that TG1 was associated with MYC and the induction of ferroptosis. Furthermore, the ferroptosis inhibitor Bardoxolone abrogated the cytotoxic effect of TG1 in CRC cells, indicating that ferroptosis played a crucial role in TG1-induced cytotoxicity. CONCLUSIONS: These findings suggest that TG1 might be a potential and potent compound for clinical use in the treatment of CRC by inhibiting proliferation and inducing ferroptosis through the MYC pathway.

6.
J Transl Med ; 21(1): 505, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496011

RESUMO

BACKGROUND: Colorectal cancer (CRC) is highly prevalent and lethal globally, and its prognosis remains unsatisfactory. Drug resistance is regarded as the main cause of treatment failure leading to tumor recurrence and metastasis. The overexpression of fucosylated epitopes, which are usually modifications of glycoproteins, was reported to occur in various epithelial cancers. However, the effects of treatments that target these antigens in colorectal cancer remain unclear. METHODS: This study investigated the expression of heavily fucosylated glycans (HFGs) in 30 clinical samples from patients with CRC and other normal human tissues. The complement-dependent cytotoxicity was explored in vitro through treatment with anti-HFG monoclonal antibody (mAb) alone or in combination with chemotherapeutic agents. In vivo inhibitory effects were also examined using a xenograft mouse model. RESULTS: Immunohistochemistry staining and western blotting revealed that HFG expression was higher in human colorectal cancer tissues than in normal tissues. In DLD-1 and SW1116 cells, which overexpress fucosylated epitopes, anti-HFG mAb produced observable cytotoxic effects, especially when it was combined with chemotherapeutic agents. The xenograft model also demonstrated that anti-HFG mAb had potent and dose-dependent inhibitory effects on colorectal tumor growth. CONCLUSIONS: As a novel cancer antigen, HFGs are a promising treatment target, and the implementation of anti-HFG mAb treatment for CRC warrants further investigation.


Assuntos
Neoplasias Colorretais , Recidiva Local de Neoplasia , Humanos , Animais , Camundongos , Imuno-Histoquímica , Antígenos , Modelos Animais de Doenças , Epitopos , Polissacarídeos/farmacologia , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral
7.
PLoS One ; 18(6): e0285970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37262048

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most lethal cancers worldwide. Long-term survival is not achieved in metastatic CRC despite the current multidisciplinary therapies. Bromelain, a compound extracted from the pineapple plant, has multiple functions and anticancer properties. Previously, bromelain has been chromatographically separated into four fractions. Fraction 3 (F3) exhibits the highest proteolytic activity. The anticancer effects of F3 bromelain in CRC cells is unknown. METHODS: In vitro cytotoxicity was verified through a sulforhodamine B assay. Apoptosis in CRC cells induced by unfractionated or F3 bromelain was examined using Annexin V-FITC/PI staining and Western blot analysis. ROS status, autophagy and lysosome formation were determined by specific detection kit. RESULTS: The cytotoxicity of F3 bromelain in CRC cells was found to be comparable to that of unfractionated bromelain. F3 bromelain induces caspase-dependent apoptosis in CRC cells. Treatment with unfractionated or F3 bromelain increased superoxide and oxidative stress levels and autophagy and lysosome formation. ATG5/12 and beclin-1 were upregulated, and the conversion of LC3B-I to LC3B-II was increased significantly by treatment with F3 bromelain. Treated CQ, autophagy inhibitor, with unfractionated or F3 bromelain enhances the cytotoxic effects. Finally, the combination of unfractionated and F3 bromelain with a routine chemotherapeutic agent (5-fluourouracil, irinotecan, or oxaliplatin) resulted in synergistically higher cytotoxic potency in CRC cells. CONCLUSION: Unfractionated and F3 bromelain inhibits CRC cell proliferation in vitro, and the cytotoxic effects of unfractionated bromelain are equivalent to F3 bromelain. F3 bromelain may be a potential and potent drug for clinical use due to its anticancer efficacy and high synergistic cytotoxicity when combined with a routine chemotherapeutic agent for CRC.


Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Colorretais , Humanos , Bromelaínas/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Irinotecano/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Apoptose , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia
8.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37373155

RESUMO

Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related mortality worldwide. Even with advances in therapy, CRC mortality remains high. Therefore, there is an urgent need to develop effective therapeutics for CRC. PCTAIRE protein kinase 1 (PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family, and the function of PCTK1 in CRC is poorly understood. In this study, we found that patients with elevated PCTK1 levels had a better overall survival rate in CRC based on the TCGA dataset. Functional analysis also showed that PCTK1 suppressed cancer stemness and cell proliferation by using PCTK1 knockdown (PCTK1-KD) or knockout (PCTK1-KO) and PCTK1 overexpression (PCTK1-over) CRC cell lines. Furthermore, overexpression of PCTK1 decreased xenograft tumor growth and knockout of PCTK1 significantly increased in vivo tumor growth. Moreover, knockout of PCTK1 was observed to increase the resistance of CRC cells to both irinotecan (CPT-11) alone and in combination with 5-fluorouracil (5-FU). Additionally, the fold change of the anti-apoptotic molecules (Bcl-2 and Bcl-xL) and the proapoptotic molecules (Bax, c-PARP, p53, and c-caspase3) was reflected in the chemoresistance of PCTK1-KO CRC cells. PCTK1 signaling in the regulation of cancer progression and chemoresponse was analyzed using RNA sequencing and gene set enrichment analysis (GSEA). Furthermore, PCTK1 and Bone Morphogenetic Protein Receptor Type 1B (BMPR1B) in CRC tumors were negatively correlated in CRC patients from the Timer2.0 and cBioPortal database. We also found that BMPR1B was negatively correlated with PCTK1 in CRC cells, and BMPR1B expression was upregulated in PCTK1-KO cells and xenograft tumor tissues. Finally, BMPR1B-KD partially reversed cell proliferation, cancer stemness, and chemoresistance in PCTK1-KO cells. Moreover, the nuclear translocation of Smad1/5/8, a downstream molecule of BMPR1B, was increased in PCTK1-KO cells. Pharmacological inhibition of Smad1/5/8 also suppressed the malignant progression of CRC. Taken together, our results indicated that PCTK1 suppresses proliferation and cancer stemness and increases the chemoresponse of CRC through the BMPR1B-Smad1/5/8 signaling pathway.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Quinases Ciclina-Dependentes/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais
9.
J Cell Biochem ; 124(6): 907-920, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37183314

RESUMO

Colorectal cancer (CRC) is the primary cause of death from gastrointestinal cancers. Aldehyde dehydrogenase 2 (ALDH2), a crucial mitochondrial enzyme for the oxidative pathway of alcohol metabolism, plays a dual role in cancer progression. In some cancers, it is tumor suppressive; in others, it drives cancer progression. However, whether targeting ALDH2 has any therapeutic implications or prognostic value in CRC is still unclear. Here, we investigated the role of ALDH2 in CRC progression by targeting its enzymatic activity rather than gene expression. We found that inhibiting ALDH2 by CVT-10216 and daidzein significantly decrease migration and stemness properties of both DLD-1 and HCT 116 cells, whereas activating ALDH2 by Alda-1 enhances migration rate. Concomitantly, ALDH2 inhibition by both CVT-10216 and daidzein downregulates the mRNA levels of fibronectin, snail, twist, MMP7, CD44, c-Myc, SOX2, and OCT-4, which are oncogenic in the advanced stage of CRC. Furthermore, Gene Set Enrichment Analysis (GSEA) on ALDH2 co-expressed genes from The Cancer Genome Atlas (TCGA) revealed that MYC target gene sets are upregulated. We found that ALDH2 inhibition decreased the nuclear protein levels of pGSK3ß serine 9 and c-Myc. This suggests that ALDH2 probably targets ß-catenin signaling in CRC cells. Together, our results demonstrate the prognostic value of ALDH2 in CRC as it regulates both CRC stemness and migration. Our findings also propose that the plant-derived isoflavone daidzein could be a potential chemotherapeutic drug targeting ALDH2 in CRC.


Assuntos
Neoplasias Colorretais , beta Catenina , Humanos , Linhagem Celular Tumoral , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Colorretais/patologia , Transdução de Sinais , Células HCT116 , Regulação Neoplásica da Expressão Gênica , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo
10.
Biomedicines ; 11(5)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37239055

RESUMO

Estrogen and estrogen receptors (ER) play a key role in breast cancer progression, which can be treated with endocrine therapy. Nevertheless, resistance to endocrine therapies is developed over time. The tumor expression of thrombomodulin (TM) is correlated with favorable prognosis in several types of cancer. However, this correlation has not yet been confirmed in ER-positive (ER+) breast cancer. This study aims to evaluate the role of TM in ER+ breast cancer. Firstly, we found that lower TM expression correlates to poor overall survival (OS) and relapse-free survival (RFS) rates in ER+ breast cancer patients through Kaplan-Meier survival analysis (p < 0.05). Silencing TM in MCF7 cells (TM-KD) increased cell proliferation, migration, and invasion ability. Additionally, TM-KD MCF7 cells showed higher sensitivity (IC50 15 µM) to the anti-cancer agent curcumin than the scrambled control cells. Conversely, overexpression of TM (TM-over) in T47D cells leads to decreased cell proliferation, migration, and invasion ability. Furthermore, TM-over T47D cells showed more resistance (IC50 > 40 µM) to the curcumin treatment. The PI staining, DAPI, and tunnel assay also confirmed that the curcumin-induced apoptosis in TM-KD MCF7 cells was higher (90.34%) than in the scrambled control cells (48.54%). Finally, the expressions of drug-resistant genes (ABCC1, LRP1, MRP5, and MDR1) were determined by qPCR. We found that the relative mRNA expression levels of ABCC1, LRP1, and MDR1 genes after curcumin treatment were higher in scrambled control cells than in TM-KD cells. In conclusion, our results demonstrated that TM plays a suppressive role in the progression and metastasis of ER+ breast cancer, and it regulates curcumin sensitivity by interfering with ABCC1, LRP1, and MDR1 gene expression.

11.
Sci Rep ; 13(1): 4366, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927770

RESUMO

Oxaliplatin (OXA) is the first-line chemotherapy drug for metastatic colorectal cancer (mCRC), and the emergence of drug resistance is a major clinical challenge. Although there have been numerous studies on OXA resistance, but its underlying molecular mechanisms are still unclear. This study aims to identify key regulatory genes and pathways associated with OXA resistance. The Gene Expression Omnibus (GEO) GSE42387 dataset containing gene expression profiles of parental and OXA-resistant LoVo cells was applied to explore potential targets. GEO2R, STRING, CytoNCA (a plug-in of Cytoscape), and DAVID were used to analyze differentially expressed genes (DEGs), protein-protein interactions (PPIs), hub genes in PPIs, and gene ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. R2 online platform was used to run a survival analysis of validated hub genes enriched in KEGG pathways. The ENCORI database predicted microRNAs for candidate genes. A survival analysis of those genes was performed, and validated using the OncoLnc database. In addition, the 'clusterProfiler' package in R was used to perform gene set enrichment analysis (GSEA). We identified 395 DEGs, among which 155 were upregulated and 240 were downregulated. In total, 95 DEGs were screened as hub genes after constructing the PPI networks. Twelve GO terms and three KEGG pathways (steroid hormone biosynthesis, malaria, and pathways in cancer) were identified as being significant in the enrichment analysis of hub genes. Twenty-one hub genes enriched in KEGG pathways were defined as key genes. Among them AKT3, phospholipase C Beta 4 (PLCB4), and TGFB1 were identified as OXA-resistance genes through the survival analysis. High expressions of AKT3 and TGFB1 were each associated with a poor prognosis, and lower expression of PLCB4 was correlated with worse survival. Further, high levels of hsa-miR-1271-5p, which potentially targets PLCB4, were associated with poor overall survival in patients with CRC. Finally, we found that PLCB4 low expression was associated with MAPK signaling pathway and VEGF signaling pathway in CRC. Our results demonstrated that hsa-miR-1271-5p/PLCB4 in the pathway in cancer could be a new potential therapeutic target for mCRC with OXA resistance.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Oxaliplatina/farmacologia , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Redes Reguladoras de Genes , Biologia Computacional/métodos
12.
Biomed Res Int ; 2022: 1322788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178443

RESUMO

Oxaliplatin resistance is a major issue in the treatment of p53 mutant colorectal cancer (CRC). Finding the specific biomarkers would improve therapeutic efficacy of patients with CRC. In order to figure out the biomarker for CRC patients with mutant p53 access oxaliplatin, a Gene Expression Omnibus dataset (GSE42387) was used to determine differentially expressed genes (DEGs). The Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software were used to predict protein-protein interactions. The Database for Annotation, Visualization, and Integrated Discovery online tool was used to group the DEGs into their common pathways. 138 DEGs were identified with 46 upregulated and 92 downregulated. In the PPI networks, 7 of the upregulated genes and 13 of the downregulated genes were identified as hub genes (high degrees). Four hub genes, aldehyde dehydrogenase 2 family member (ALDH2), aldo-keto reductase family 1 member B1 (AKR1B1), aldo-keto reductase family 1 member B10 (AKR1B10), and monoglyceride lipase (MGLL) were enriched in the most significant pathway, glycerolipid metabolism. Further, we found that low expression of ALDH2 is correlated with poor overall survival and oxaliplatin resistance. Finally, we found that combined treatment with ALDH2 inhibitor and oxaliplatin will reduce the sensitivity to oxaliplatin in p53 mutant HT29 cells. In conclusion, we demonstrate that ALDH2 may be a biomarker for oxaliplatin resistance status in CRC patients and bring new insight into treatment strategy for p53 mutant CRC patients.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Neoplasias Colorretais , Oxaliplatina , Proteína Supressora de Tumor p53 , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído Redutase/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Oxaliplatina/uso terapêutico , Mapas de Interação de Proteínas , Índice Terapêutico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Dis Markers ; 2022: 8316335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35111269

RESUMO

BACKGROUND: Exposure to nicotine has been observed associated with tumor progression, metastasis, and therapy resistance of many cancers. Hepatocellular carcinoma (HCC) is one major cancer related to the liver and the most difficult to treat malignancies worldwide. The underlying mechanism of nicotine in the stimulation of HCC tumorigenesis is still not studied well. METHODS: Classically, nicotine binds to nicotinic acetylcholine receptors (nAChRs) and induces many downstream cancer-associated signaling pathways. Big data analysis is used to explore the importance of a7nAChR-Jak2 axis in the progression of hepatocellular carcinoma. Bioinformatic analysis was performed to determine gene associated with a7nAChR-Jak2 axis of HCC patients. Biological importance of a7nAChR-Jak2 axis was investigated in vitro (Hun7 and HepG2 cell lines), and athymic nude mouse models bearing HepG2-HCC cells xenografts were established in vivo. RESULT: We found that nicotine exposure stimulated the HCC tumorigenicity by inducing the expression of one of the key nAChRs subunit that is α7nAChR as well as the expression of Janus kinase (JAK)-2. In both the in vitro and in vivo studies, the reduced overexpression of α7nAChR and increased sensitization of HCC towards treatment is observed with dehydrocrenatidine (DHCT), a novel and potent JAK family kinase inhibitor. Interestingly, DHCT treatment results in the reduction of the epithelial-mesenchymal transition process which leads to a significant reduction of clonogenicity, migratory, and invasive ability of HCC cells. Moreover, DHCT treatment also inhibits the cancer stem cell phenotype by inhibiting the tumor-sphere formation and reducing the number of ALDH1+ cells population in nicotine-stimulated HCC cells. CONCLUSIONS: Taken together, the presented results indicate the positive effect of inhibition of nicotine induced overexpression of α7nAChR and JAK2, unique to HCC. Thus, these findings suggest the nicotine effect on HCC progression via α7nAChR-mediated JAK2 signaling pathways, and DHCT treatment enhances the therapeutic potential of HCC patients via overcoming/reversing the effect of nicotine in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carbolinas , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Janus Quinase 2/metabolismo , Neoplasias Hepáticas/genética , Camundongos , Nicotina/farmacologia , Nicotina/uso terapêutico , Transdução de Sinais
14.
Int J Med Sci ; 19(1): 34-46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975297

RESUMO

The incidence of colorectal cancer (CRC) has increased significantly in the past decade. Early diagnosis and new therapeutics are still urgently needed for CRC in clinical practice. Human α-defensin 6 (HD6) plays a defense role against microbes in the gastrointestinal tract. However, the role and mechanism of HD6 in CRC is still unresolved. Specimens from CRC patients with higher HD6 showed better outcomes. Overexpressed HD6 in CRC cells caused a reduction of cell proliferative, migratory, and invasive ability in vitro and in vivo. HD6-overexpressed caused S phase arrest through changes in cyclin-A and B and CDK2 levels. In addition, serpine-1 may be negatively regulated by HD6 altering the translocation of c-Jun N-terminal kinases (JNK), extracellular regulated protein kinases (ERK), and p38. Higher HD6 and lower serpine-1 levels in CRC patients reflected better outcomes. Finally, we found that HD6 interacts directly with epidermal growth factor receptor (EGFR) by co-immunoprecipitated assay. EGF treatment caused an increase of the level of serpine-1 and pEGFR levels and then increased growth activity in HD6 overexpressing cells. Together, our study shows that HD6 may compete with EGF to bind to EGFR and interrupt cancer progression in CRC. We believe these findings may give new insights for HD6 in CRC therapy.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Fator de Crescimento Epidérmico/metabolismo , alfa-Defensinas/metabolismo , Animais , Biomarcadores Tumorais , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/genética , Transição Epitelial-Mesenquimal/fisiologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Fase S/fisiologia , Células Tumorais Cultivadas , alfa-Defensinas/genética
15.
Int J Med Sci ; 18(15): 3452-3462, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522171

RESUMO

Hepatocellular carcinoma (HCC) is a worldwide health problem. Currently, there is no effective therapeutic strategy for HCC patients. Chewing areca nut is closely associated with oral cancer and liver cirrhosis. The therapeutic effect of areca nut extract (ANE) on HCC is unknown. Our results revealed that ANE treatment caused a reduction in cell viability and an increase in cell apoptosis and suppressed tumor progression in xenograft models. ANE-treated didn't induce liver tumor in nude mice. For mechanism dissection, ANE treatment caused ROS-mediated autophagy and lysosome formation. Pretreatment with an ROS inhibitor, aminoguanidine hemisulfate (AGH), abolished ANE-induced ROS production. ANE treated cells caused an increase in light chain 3 (LC3)-I to -II conversion, anti-thymocyte globulin 5+12 (ATG5+12), and beclin levels, and apoptosis related-protein changes (an increases in BAX, cleaved poly(ADP-ribose) polymerase (c-PARP), and a decrease in the Bcl-2 level). In conclusion, our study demonstrated that the ANE may be a new potential compound for HCC therapy.


Assuntos
Areca/química , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Nus , Nozes/química , Espécies Reativas de Oxigênio/metabolismo
16.
Int J Med Sci ; 18(12): 2521-2531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104083

RESUMO

Developing treatment strategies for triple-negative breast cancer (TNBC) has become an important clinical challenge. Currently, taxane-based chemotherapy is one of the standard treatments for TNBC. However, determining the key factor of taxane-resistance is urgently in need for clinical treatment for breast cancer. We used GEO data to generate paclitaxel resistance in two basal-like TNBC cell lines (SUM149 and MDA-MB-468). Seventy-one common upregulated differentially expressed genes (DEGs) and 11 downregulated DEGs were found to be related to paclitaxel resistance. By constructing protein-protein interactions, 28 hub proteins with a degree cutoff criterion of ≥1 were found. Nine hub genes (COL4A6, COL4A5, IL6, PDGFA, LPAR1, FYB, IL20, IL18R1 and INHBA) are involved in important signaling pathways. We found that upregulated PDGFA and downregulated COL4A6 were significantly associated with an insensitive response to neoadjuvant paclitaxel-based therapy. A Kaplan-Meier plot was created to check the prognostic values of 11 hub DEGs in terms of recurrence-free survival. High expressions of PDGFA and LAMB3 were correlated with poor recurrence-free survival, while low levels of FYB, IL18R1, and RASGRP1 indicated poorer relapse-free survival. Our results suggest that PDGFA, COL4A6, LPAR1, FYB, COL4A5, and RASGRP1 might be candidate target genes for taxane-based therapy in basal-like TNBC.


Assuntos
Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Recidiva Local de Neoplasia/epidemiologia , Paclitaxel/farmacologia , Neoplasias de Mama Triplo Negativas/terapia , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Heterogeneidade Genética , Humanos , Estimativa de Kaplan-Meier , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/prevenção & controle , Paclitaxel/uso terapêutico , Mapas de Interação de Proteínas/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima
18.
Int J Med Sci ; 18(11): 2251-2261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967600

RESUMO

Colorectal cancer (CRC) is a worldwide health problem. Glucose-regulated protein 94 (GRP94) is known as an important endoplasmic reticulum-stress response protein that shows correlation with aggressive cancer behavior. However, the role of GRP94 in CRC is still unclear. Our results showed that silencing GRP94 (GRP94-KD) reduced cell proliferation, invasion and migration of CRC cells and suppressed tumorigenesis in the xenograft mouse model. Rescue assay showed that ETV1 overexpression reversed the effect of GRP94 on cell proliferation and migration. In the molecular mechanism, we found that knockdown of GRP94 inhibited the level of MAPK pathway, including ERK/p-ERK, JNK/p-JNK, and p38/p-p38 signals. Cyclooxygenase-2 and epithelial-mesenchymal transformation biomarkers, such as N-cadherin, vimentin, and ß-catenin were suppressed in GRP94 knockdown cells. Treatment of specific inhibitors of MAPK pathway showed that ERK/p-ERK, and p38/p-p38 inhibitors significantly influenced ETV1 expression as compared to JNK/p-JNK inhibitor. Our results indicated that silencing GRP94 repressed the ability of EMT process, cancer cell proliferation, metastasis, and CRC tumorigenesis. Therefore, GRP94 may play an important role in CRC by regulating ETV1 and MAPK pathway.


Assuntos
Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Glicoproteínas de Membrana/metabolismo , Fatores de Transcrição/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Glicoproteínas de Membrana/genética , Camundongos
19.
Biomol Ther (Seoul) ; 29(5): 551-561, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34031270

RESUMO

Thyroid cancer is the most common endocrine malignancy. Patients with well-differentiated thyroid cancers, such as papillary and follicular cancers, have a favorable prognosis. However, poorly differentiated thyroid cancers, such as medullary, squamous and anaplastic advanced thyroid cancers, are very aggressive and insensitive to radioiodine treatment. Thus, novel therapies that attenuate metastasis are urgently needed. We found that both PDGFC and PDGFRA are predominantly expressed in thyroid cancers and that the survival rate is significantly lower in patients with high PDGFRA expression. This finding indicates the important role of PDGF/PDGFR signaling in thyroid cancer development. Next, we established a SW579 squamous thyroid cancer cell line with 95.6% PDGFRA gene insertion and deletions (indels) through CRISPR/Cas9. Protein and invasion analysis showed a dramatic loss in EMT marker expression and metastatic ability. Furthermore, xenograft tumors derived from PDGFRA geneedited SW579 cells exhibited a minor decrease in tumor growth. However, distant lung metastasis was completely abolished upon PDGFRA gene editing, implying that PDGFRA could be an effective target to inhibit distant metastasis in advanced thyroid cancers. To translate this finding to the clinic, we used the most relevant multikinase inhibitor, imatinib, to inhibit PDGFRA signaling. The results showed that imatinib significantly suppressed cell growth, induced cell cycle arrest and cell death in SW579 cells. Our developed noninvasive apoptosis detection sensor (NIADS) indicated that imatinib induced cell apoptosis through caspase-3 activation. In conclusion, we believe that developing a specific and selective targeted therapy for PDGFRA would effectively suppress PDGFRA-mediated cancer aggressiveness in advanced thyroid cancers.

20.
Sci Rep ; 11(1): 7268, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790307

RESUMO

Genetic co-expression network (GCN) analysis augments the understanding of breast cancer (BC). We aimed to propose GCN-based modeling for BC relapse-free survival (RFS) prediction and to discover novel biomarkers. We used GCN and Cox proportional hazard regression to create various prediction models using mRNA microarray of 920 tumors and conduct external validation using independent data of 1056 tumors. GCNs of 34 identified candidate genes were plotted in various sizes. Compared to the reference model, the genetic predictors selected from bigger GCNs composed better prediction models. The prediction accuracy and AUC of 3 ~ 15-year RFS are 71.0-81.4% and 74.6-78% respectively (rfm, ACC 63.2-65.5%, AUC 61.9-74.9%). The hazard ratios of risk scores of developing relapse ranged from 1.89 ~ 3.32 (p < 10-8) over all models under the control of the node status. External validation showed the consistent finding. We found top 12 co-expressed genes are relative new or novel biomarkers that have not been explored in BC prognosis or other cancers until this decade. GCN-based modeling creates better prediction models and facilitates novel genes exploration on BC prognosis.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Bases de Dados de Ácidos Nucleicos , Regulação Neoplásica da Expressão Gênica , Modelos Biológicos , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA