Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
BMC Infect Dis ; 24(1): 1116, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375604

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), led to a global pandemic from 2020. In Thailand, five waves of outbreaks were recorded, with the fourth and fifth waves driven by the Delta and Omicron variants, resulting in over 20,000 new confirmed cases daily at their peaks. METHODS: This cross-sectional study investigated the associations between clinical symptoms, vaccination status, antibody responses, and post-COVID-19 sequelae in COVID-19 patients. Plasma samples and clinical data were collected from participants admitted to hospitals in Thailand between July 2021 and August 2022, with follow-ups conducted for one year. The study included 110 participants infected with either the Delta (n = 46) or Omicron (n = 64) variants. Virus genotypes were confirmed by RT-PCR of nasal swab RNA and partial nucleotide sequencing of the S gene. IgG and IgA antibody levels against the receptor-binding domain (RBD) of SARS-CoV-2 Delta and Omicron variants were measured in plasma samples using ELISA. RESULTS: Pneumonia was found to be associated with Delta variant infections, while sore throat, congestion or runny nose, and headache were linked to Omicron infections. Vaccination with fewer than two doses and diabetes mellitus were significantly associated with higher disease severity. Specific IgG and IgA antibodies against the RBD of the Delta variant generally rose by day 14 and were maintained for up to two months, whereas the pattern of antibody response to the Omicron variant was less clear. Antibody risings were found to be positively associated with pneumonia, certain underlying conditions (obesity, hypertension, dyslipidemia, and diabetes mellitus), and age ≥ 60 years. Delta variant infections were associated with forgetfulness, hair loss, and headache during the 1-year post-infection period. Females were more likely to experience hair loss, forgetfulness, and joint pain, while older age was associated with joint pain. CONCLUSIONS: This study enhances our understanding of SARS-CoV-2 infections in Thais, particularly concerning the Delta and Omicron variants. The findings can inform public health planning and response strategies for future outbreaks of SARS-CoV-2 or other emerging viral diseases.


Assuntos
Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Feminino , Masculino , Estudos Transversais , Pessoa de Meia-Idade , Adulto , Tailândia/epidemiologia , Anticorpos Antivirais/sangue , Seguimentos , Vacinação , Idoso , Imunoglobulina G/sangue , Vacinas contra COVID-19/imunologia , Imunoglobulina A/sangue , Adulto Jovem , Formação de Anticorpos
2.
Sci Rep ; 14(1): 24966, 2024 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-39443499

RESUMO

Melioidosis is a life-threatening tropical disease caused by an intracellular gram-negative bacterium Burkholderia pseudomallei. B. pseudomallei polymerizes the host cell actin through autotransporters, BimA, and BimC, to facilitate intracellular motility. Two variations of BimA in B. pseudomallei have been reported previously: BimABp and BimA B. mallei-like (BimABm). However, little is known about genetic sequence variations within BimA and BimC, and their potential effect on the virulence of B. pseudomallei. This study analyzed 1,294 genomes from clinical isolates of patients admitted to nine hospitals in northeast Thailand between 2015 and 2018 and performed 3D structural analysis and plaque-forming efficiency assay. The genomic analysis identified 10 BimABp and 5 major BimC types, in the dominant and non-dominant lineages of the B. pseudomallei population structure. Our protein prediction analysis of all BimABp and major BimC variants revealed that their 3D structures were conserved compared to those of B. pseudomallei K96243. Sixteen representative strains of the most distant BimABp types were tested for plaque formation and the development of polar actin tails in A549 epithelial cells. We found that all isolates retained these functions. These findings enhance our understanding of the prevalence of BimABp and BimC variants and their implications for B. pseudomallei virulence.


Assuntos
Burkholderia pseudomallei , Variação Genética , Melioidose , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/isolamento & purificação , Humanos , Tailândia/epidemiologia , Melioidose/microbiologia , Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células A549 , Genoma Bacteriano , Filogenia , Proteínas dos Microfilamentos
3.
Wellcome Open Res ; 9: 421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246519

RESUMO

Background: Burkholderia thailandensis is an environmental bacteria closely related to Burkholderia pseudomallei that rarely causes infection in humans. Some environmental isolates have shown to express a capsular polysaccharide known as B. thailandensis capsular variant (BTCV), but human infection has not previously been reported. Although B. thailandednisis has been identified in environmental samples in Laos before, there have not been any human cases reported. Case: A 44-year-old man presented to a district hospital in Laos with a short history of fever and pain in his left foot. Physical examination identified a deep soft-tissue abscess in his left foot and an elevated white blood count. A deep pus sample was taken and melioidosis was suspected from preliminary laboratory tests. The patient was initially started on cloxacillin, ceftriaxone and metronidazole, and was then changed to ceftazidime treatment following local melioidosis treatment guidelines. Laboratory methods: A deep pus sample was sent to Mahosot Hospital microbiology laboratory where a mixed infection was identified including Burkholderia sp. Conventional identification tests and API 20NE were inconclusive, and the B. pseudomallei-specific latex agglutination was positive. The isolate then underwent a Burkholderia species specific PCR which identified the isolate as B. thailandensis. The isolate was sent for sequencing on the Illumina NovaSeq 6000 system and multi-locus sequence typing analysis identified the isolate had the same sequence type (ST696) as B. thailandensis E555, a strain which expresses a B. pseudomallei-like capsular polysaccharide. Conclusion: This is the first report of human infection with B. thailandensis in Laos, and the first report of any human infection with the B. thailandensis capsular variant. Due to the potential for laboratory tests to incorrectly identify this bacteria, staff in endemic areas for B. thailandensis and B. pseudomallei should be aware and ensure that appropriate confirmatory methods are used to differentiate between the species.


> Burkholderia thailandensis is a bacteria that is found in the environment. Rarely, this bacteria can cause infection in humans. Here we report a B. thailandensis infection in a 44 year old male in Laos. The patient sustained a puncture wound in his left foot and when presenting at a district hospital was prescribed cloxacillin. The wound did not improve and on day three of admission, a pus sample was sent to Mahosot Hospital Microbiology Laboratory for investigation. A preliminary diagnosis of melioidosis, caused by the bacteria Burkholderia pseudomallei, was made and antibiotic treatment was changed. Additional laboratory investigation determined that the isolate was actually B. thailandensis and antibiotic treatment was further changed. Due to the inconclusive results of the initial laboratory tests, the isolate was sent for sequencing and was identified as a strain which expresses a B. pseudomallei-like capsular polysaccharide. This is the first report of infection with B. thailandensis in Laos and the first report of infection with a B. thailandensis capsular variant.

4.
Sci Rep ; 14(1): 21521, 2024 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277662

RESUMO

The quorum sensing (QS) system mediated by the abaI gene in Acinetobacter baumannii is crucial for various physiological and pathogenic processes. In this study, we constructed a stable markerless abaI knockout mutant (ΔabaI) strain using a pEXKm5-based allele replacement method to investigate the impact of abaI on A. baumannii. Proteomic analysis revealed significant alterations in protein expression between the wild type (WT) and ΔabaI mutant strains, particularly in proteins associated with membrane structure, antibiotic resistance, and virulence. Notably, the downregulation of key outer membrane proteins such as SurA, OmpA, OmpW, and BamA suggests potential vulnerabilities in outer membrane integrity, which correlate with structural abnormalities in the ΔabaI mutant strain, including irregular cell shapes and compromised membrane integrity, observed by scanning and transmission electron microscopy. Furthermore, diminished expression of regulatory proteins such as OmpR and GacA-GacS highlights the broader regulatory networks affected by abaI deletion. Functional assays revealed impaired biofilm formation and surface-associated motility in the mutant strain, indicative of altered colonization capabilities. Interestingly, the mutant showed a complex antibiotic susceptibility profile. While it demonstrated increased susceptibility to membrane-targeting antibiotics, its response to beta-lactams was more nuanced. Despite increased expression of metallo-beta-lactamase (MBL) superfamily proteins and DcaP-like protein, the mutant unexpectedly showed lower MICs for carbapenems (imipenem and meropenem) compared to the wild-type strain. This suggests that abaI deletion affects antibiotic susceptibility through multiple, potentially competing mechanisms. Further investigation is needed to fully elucidate the interplay between quorum sensing, antibiotic resistance genes, and overall antibiotic susceptibility in A. baumannii. Our findings underscore the multifaceted role of the abaI gene in modulating various cellular processes and highlight its significance in A. baumannii physiology, pathogenesis, and antibiotic resistance. Targeting the abaI QS system may offer novel therapeutic strategies for this clinically significant pathogen.


Assuntos
Acinetobacter baumannii , Antibacterianos , Proteínas de Bactérias , Biofilmes , Mutação , Percepção de Quorum , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/patogenicidade , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Virulência/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Percepção de Quorum/genética , Percepção de Quorum/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/tratamento farmacológico , Proteômica
5.
Int J Infect Dis ; 147: 107173, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094762

RESUMO

OBJECTIVES: We studied the immunogenicity after primary and booster vaccinations of the Abdala COVID-19 vaccine, a receptor-binding domain protein subunit vaccine, in Vietnamese people by determining the level of neutralization and cross-neutralization activities against the ancestral SARS-CoV-2 and its variants and SARS-CoV-1. METHODS: We performed a prospective observational study, enrolling adults aged 19-59 years in Dong Thap province, southern Vietnam, and collected blood samples from baseline until 4 weeks after the booster dose. We measured anti-nucleocapsid, anti-spike, and neutralizing antibodies against SARS-CoV-2 and assessed the cross-neutralization against 14 SARS-CoV-2 variants and SARS-CoV-1. Complementary antibody data came from Vietnamese health care workers fully vaccinated with ChAdOx1-S. RESULTS: After primary vaccination, anti-spike antibody and neutralizing antibodies were detectable in 98.4% and 87% of 251 study participants, respectively, with neutralizing antibody titers similar to that induced by ChAdOx1-S vaccine. Antibody responses after a homologous (Abdala COVID-19) or heterologous (messenger RNA BNT162b2) booster could neutralize 14 SARS-CoV-2 variants (including Omicron) and SARS-CoV-1. CONCLUSIONS: Abdala COVID-19 vaccine is immunogenic in Vietnamese people. Enhanced antibody response after a booster dose could cross-neutralize 14 SARS-CoV-2 variants and SARS-CoV-1. Our results have added to the growing body of knowledge about the contribution of protein subunit vaccine platforms to pandemic control.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Humanos , Vietnã , Adulto , Estudos Prospectivos , Feminino , Masculino , Anticorpos Neutralizantes/sangue , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/epidemiologia , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Adulto Jovem , Imunogenicidade da Vacina , ChAdOx1 nCoV-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , População do Sudeste Asiático
6.
JCI Insight ; 9(18)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163129

RESUMO

Melioidosis, a neglected tropical infection caused by Burkholderia pseudomallei, commonly presents as pneumonia or sepsis with mortality rates up to 50% despite appropriate treatment. A better understanding of the early host immune response to melioidosis may lead to new therapeutic interventions and prognostication strategies to reduce disease burden. Whole blood transcriptomic signatures in 164 patients with melioidosis and in 70 patients with other infections hospitalized in northeastern Thailand enrolled within 24 hours following hospital admission were studied. Key findings were validated in an independent melioidosis cohort. Melioidosis was characterized by upregulation of interferon (IFN) signaling responses compared with other infections. Mortality in melioidosis was associated with excessive inflammation, enrichment of type 2 immune responses, and a dramatic decrease in T cell-mediated immunity compared with survivors. We identified and independently confirmed a 5-gene predictive set classifying fatal melioidosis (validation cohort area under the receiver operating characteristic curve 0.83; 95% CI, 0.67-0.99). This study highlights the intricate balance between innate and adaptive immunity during fatal melioidosis and can inform future precision medicine strategies for targeted therapies and prognostication in this severe infection.


Assuntos
Burkholderia pseudomallei , Melioidose , Melioidose/imunologia , Melioidose/mortalidade , Melioidose/microbiologia , Humanos , Masculino , Burkholderia pseudomallei/imunologia , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Tailândia/epidemiologia , Imunidade Inata , Transcriptoma , Imunidade Adaptativa , Interferons/metabolismo , Interferons/imunologia
7.
Emerg Microbes Infect ; 13(1): 2380822, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39008280

RESUMO

Melioidosis is a tropical infection caused by the intracellular pathogen Burkholderia pseudomallei, an underreported and emerging global threat. As melioidosis-associated mortality is frequently high despite antibiotics, novel management strategies are critically needed. Therefore, we sought to determine whether functional changes in the host innate and adaptive immune responses are induced during acute melioidosis and are associated with outcome. Using a unique whole blood stimulation assay developed for use in resource-limited settings, we examined induced cellular functional and phenotypic changes in a cohort of patients with bacteremic melioidosis prospectively enrolled within 24 h of positive blood culture and followed for 28 days. Compared to healthy controls, melioidosis survivors generated an IL-17 response mediated by Th17 cells and terminally-differentiated effector memory CD8+ T cells (P < .05, both), persisting to 28 days after enrolment. Furthermore, melioidosis survivors developed polyfunctional cytokine production in CD8+ T cells (P < .01). Conversely, a reduction in CCR6+ CD4+ T cells was associated with higher mortality, even after adjustments for severity of illness (P = 0.004). Acute melioidosis was also associated with a profound acute impairment in monocyte function as stimulated cytokine responses were reduced in classical, intermediate and non-classical monocytes. Impaired monocyte cytokine function improved by 28-days after enrolment. These data suggest that IL-17 mediated cellular responses may be contributors to host defense during acute melioidosis, and that innate immune function may be impaired. These insights could provide novel targets for the development of therapies and vaccine targets in this frequently lethal disease.


Assuntos
Burkholderia pseudomallei , Linfócitos T CD8-Positivos , Melioidose , Células Th17 , Melioidose/imunologia , Melioidose/mortalidade , Melioidose/microbiologia , Humanos , Masculino , Feminino , Burkholderia pseudomallei/imunologia , Pessoa de Meia-Idade , Linfócitos T CD8-Positivos/imunologia , Células Th17/imunologia , Idoso , Adulto , Imunidade Celular , Interleucina-17/imunologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/sangue , Citocinas/imunologia , Estudos Prospectivos
8.
Nat Commun ; 15(1): 5699, 2024 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972886

RESUMO

Melioidosis is an often-fatal neglected tropical disease caused by an environmental bacterium Burkholderia pseudomallei. However, our understanding of the disease-causing bacterial lineages, their dissemination, and adaptive mechanisms remains limited. To address this, we conduct a comprehensive genomic analysis of 1,391 B. pseudomallei isolates collected from nine hospitals in northeast Thailand between 2015 and 2018, and contemporaneous isolates from neighbouring countries, representing the most densely sampled collection to date. Our study identifies three dominant lineages, each with unique gene sets potentially enhancing bacterial fitness in the environment. We find that recombination drives lineage-specific gene flow. Transcriptome analyses of representative clinical isolates from each dominant lineage reveal increased expression of lineage-specific genes under environmental conditions in two out of three lineages. This underscores the potential importance of environmental persistence for these dominant lineages. The study also highlights the influence of environmental factors such as terrain slope, altitude, and river direction on the geographical dispersal of B. pseudomallei. Collectively, our findings suggest that environmental persistence may play a role in facilitating the spread of B. pseudomallei, and as a prerequisite for exposure and infection, thereby providing useful insights for informing melioidosis prevention and control strategies.


Assuntos
Burkholderia pseudomallei , Variação Genética , Melioidose , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/isolamento & purificação , Burkholderia pseudomallei/classificação , Melioidose/microbiologia , Melioidose/epidemiologia , Tailândia/epidemiologia , Humanos , Filogenia , Fluxo Gênico , Genoma Bacteriano/genética
9.
Clin Transl Immunology ; 13(7): e1513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957437

RESUMO

Objective: Unique metabolic requirements accompany the development and functional fates of immune cells. How cellular metabolism is important in natural killer (NK) cells and their memory-like differentiation in bacterial infections remains elusive. Methods: Here, we utilise our established NK cell memory assay to investigate the metabolic requirement for memory-like NK cell formation and function in response to the Gram-negative intracellular bacteria Burkholderia pseudomallei (BP), the causative agent of melioidosis. Results: We demonstrate that CD160+ memory-like NK cells upon BP stimulation upregulate glucose and amino acid transporters in a cohort of recovered melioidosis patients which is maintained at least 3-month post-hospital admission. Using an in vitro assay, human BP-specific CD160+ memory-like NK cells show metabolic priming including increased expression of glucose and amino acid transporters with elevated glucose uptake, increased mTOR activation and mitochondrial membrane potential upon BP re-stimulation. Antigen-specific and cytokine-induced IFN-γ production of this memory-like NK cell subset are highly dependent on oxidative phosphorylation (OXPHOS) with some dependency on glycolysis, whereas the formation of CD160+ memory-like NK cells in vitro is dependent on fatty acid oxidation and OXPHOS and further increased by metformin. Conclusion: This study reveals the link between metabolism and cellular function of memory-like NK cells, which can be exploited for vaccine design and for monitoring protection against Gram-negative bacterial infection.

10.
Wellcome Open Res ; 9: 181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022321

RESUMO

A strong and effective COVID-19 and future pandemic responses rely on global efforts to carry out surveillance of infections and emerging SARS-CoV-2 variants and to act accordingly in real time. Many countries in Southeast Asia lack capacity to determine the potential threat of new variants, or other emerging infections. Funded by Wellcome, the Southeast Asia initiative to combat SARS-CoV-2 variants (SEACOVARIANTS) consortium aims to develop and apply a multidisciplinary research platform in Southeast Asia (SEA) for rapid assessment of the biological significance of SARS-CoV-2 variants, thereby informing coordinated local, regional and global responses to the COVID-19 pandemic. Our proposal is delivered by the Vietnam and Thailand Wellcome Africa Asia Programmes, bringing together a multidisciplinary team in Indonesia, Thailand and Vietnam with partners in Singapore, the UK and the USA. Herein we outline five work packages to deliver strengthened regional scientific capacity that can be rapidly deployed for future outbreak responses.


Our project strengthens local scientific capacity in South East Asia (SEA) and therefore enables the rapid assessment of SARS-CoV-2 variants as they emerge within the region. While COVID-19 remains a global pandemic, future emerging infections caused by a novel virus is an inevitable event, with SEA being a global hot-spot for pathogen emergence. Consequently, the research capacity built, the scientists trained and the research network formed as part of this project will lay the foundation for future locally-led outbreak responses. Our project will demonstrate that novel research platforms can be set up in other low and middle income countries to address the unprecedented challenges presented by emerging infections.

11.
Am J Respir Cell Mol Biol ; 71(5): 546-558, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38935886

RESUMO

Pulmonary melioidosis is a severe tropical infection caused by Burkholderia pseudomallei and is associated with high mortality, despite early antibiotic treatment. γδ T cells have been increasingly implicated as drivers of the host neutrophil response during bacterial pneumonia, but their role in pulmonary melioidosis is unknown. Here, we report that in patients with melioidosis, a lower peripheral blood γδ T-cell concentration is associated with higher mortality, even when adjusting for severity of illness. γδ T cells were also enriched in the lung and protected against mortality in a mouse model of pulmonary melioidosis. γδ T-cell deficiency in infected mice induced an early recruitment of neutrophils to the lung, independent of bacterial burden. Subsequently, γδ T-cell deficiency resulted in increased neutrophil-associated inflammation in the lung as well as impaired bacterial clearance. In addition, γδ T cells influenced neutrophil function and subset diversity in the lung after infection. Our results indicate that γδ T cells serve a novel protective role in the lung during severe bacterial pneumonia by regulating excessive neutrophil-associated inflammation.


Assuntos
Melioidose , Neutrófilos , Melioidose/imunologia , Melioidose/patologia , Melioidose/microbiologia , Animais , Neutrófilos/imunologia , Neutrófilos/metabolismo , Humanos , Pulmão/imunologia , Pulmão/patologia , Pulmão/microbiologia , Camundongos Endogâmicos C57BL , Burkholderia pseudomallei/imunologia , Feminino , Camundongos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Pneumonia/imunologia , Pneumonia/microbiologia , Pneumonia/patologia , Masculino , Modelos Animais de Doenças , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Infiltração de Neutrófilos , Linfócitos T/imunologia , Linfócitos Intraepiteliais/imunologia
12.
Vaccine ; 42(19): 3999-4010, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38744598

RESUMO

BACKGROUND: Inactivated whole-virus vaccination elicits immune responses to both SARS-CoV-2 nucleocapsid (N) and spike (S) proteins, like natural infections. A heterologous Ad26.COV2.S booster given at two different intervals after primary BBIBP-CorV vaccination was safe and immunogenic at days 28 and 84, with higher immune responses observed after the longer pre-boost interval. We describe booster-specific and hybrid immune responses over 1 year. METHODS: This open-label phase 1/2 study was conducted in healthy Thai adults aged ≥ 18 years who had completed primary BBIBP-CorV primary vaccination between 90-240 (Arm A1; n = 361) or 45-75 days (Arm A2; n = 104) before enrolment. All received an Ad26.COV2.S booster. We measured anti-S and anti-N IgG antibodies by Elecsys®, neutralizing antibodies by SARS-CoV-2 pseudovirus neutralization assay, and T-cell responses by quantitative interferon (IFN)-γ release assay. Immune responses were evaluated in the baseline-seronegative population (pre-booster anti-N < 1.4 U/mL; n = 241) that included the booster-effect subgroup (anti-N < 1.4 U/mL at each visit) and the hybrid-immunity subgroup (anti-N ≥ 1.4 U/mL and/or SARS-CoV-2 infection, irrespective of receiving non-study COVID-19 boosters). RESULTS: In Arm A1 of the booster-effect subgroup, anti-S GMCs were 131-fold higher than baseline at day 336; neutralizing responses against ancestral SARS-CoV-2 were 5-fold higher than baseline at day 168; 4-fold against Omicron BA.2 at day 84. IFN-γ remained approximately 4-fold higher than baseline at days 168 and 336 in 18-59-year-olds. Booster-specific responses trended lower in Arm A2. In the hybrid-immunity subgroup at day 336, anti-S GMCs in A1 were 517-fold higher than baseline; neutralizing responses against ancestral SARS-CoV-2 and Omicron BA.2 were 28- and 31-fold higher, respectively, and IFN-γ was approximately 14-fold higher in 18-59-year-olds at day 336. Durable immune responses trended lower in ≥ 60-year-olds. CONCLUSION: A heterologous Ad26.COV2.S booster after primary BBIBP-CorV vaccination induced booster-specific immune responses detectable up to 1 year that were higher in participants with hybrid immunity. CLINICAL TRIALS REGISTRATION: NCT05109559.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Ad26COVS1/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Seguimentos , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Interferon gama/imunologia , Fosfoproteínas/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Tailândia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem
13.
Am J Trop Med Hyg ; 110(5): 994-998, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507807

RESUMO

Melioidosis, infection caused by Burkholderia pseudomallei, is characterized by robust innate immune responses. We have previously reported associations of TLR1 single nucleotide missense variant rs76600635 with mortality and of TLR5 nonsense variant rs5744168 with both bacteremia and mortality in single-center studies of patients with melioidosis in northeastern Thailand. The objective of this study was to externally validate the associations of rs76600635 and rs5744168 with bacteremia and mortality in a large multicenter cohort of melioidosis patients. We genotyped rs76600635 and rs5744168 in 1,338 melioidosis patients enrolled in a prospective parent cohort study conducted at nine hospitals in northeastern Thailand. The genotype frequencies of rs76600635 did not differ by bacteremia status (P = 0.27) or 28-day mortality (P = 0.84). The genotype frequencies of rs5744168 did not differ by either bacteremia status (P = 0.46) or 28-day mortality (P = 0.10). Assuming a dominant genetic model, there was no association of the rs76600635 variant with bacteremia (adjusted odds ratio [OR], 0.75; 95% CI, 0.54-1.04, P = 0.08) or 28-day mortality (adjusted OR, 0.96; 95% CI, 0.71-1.28, P = 0.77). There was no association of the rs5744168 variant with bacteremia (adjusted OR, 1.24; 95% CI, 0.76-2.03, P = 0.39) or 28-day mortality (adjusted OR, 1.22; 95% CI, 0.83-1.79, P = 0.21). There was also no association of either variant with 1-year mortality. We conclude that in a large multicenter cohort of patients hospitalized with melioidosis in northeastern Thailand, neither TLR1 missense variant rs76600635 nor TLR5 nonsense variant rs5744168 is associated with bacteremia or mortality.


Assuntos
Bacteriemia , Melioidose , Receptor 1 Toll-Like , Receptor 5 Toll-Like , Humanos , Melioidose/mortalidade , Melioidose/genética , Melioidose/microbiologia , Masculino , Feminino , Receptor 1 Toll-Like/genética , Tailândia/epidemiologia , Pessoa de Meia-Idade , Bacteriemia/mortalidade , Bacteriemia/microbiologia , Bacteriemia/genética , Receptor 5 Toll-Like/genética , Adulto , Estudos de Coortes , Polimorfismo de Nucleotídeo Único , Genótipo , Burkholderia pseudomallei/genética , Estudos Prospectivos , Idoso , Predisposição Genética para Doença
14.
Microbiol Spectr ; 12(3): e0332123, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38299821

RESUMO

Burkholderia pseudomallei and Burkholderia cepacia are Gram-negative, soil-dwelling bacteria that are found in a wide variety of environmental niches. While B. pseudomallei is the causative agent of melioidosis in humans and animals, members of the B. cepacia complex typically only cause disease in immunocompromised hosts. In this study, we report the identification of B. cepacia strains isolated from either patients or soil in Laos and Thailand that express a B. pseudomallei-like 6-deoxyheptan capsular polysaccharide (CPS). These B. cepacia strains were initially identified based on their positive reactivity in a latex agglutination assay that uses the CPS-specific monoclonal antibody (mAb) 4B11. Mass spectrometry and recA sequencing confirmed the identity of these isolates as B. cepacia (formerly genomovar I). Total carbohydrates extracted from B. cepacia cell pellets reacted with B. pseudomallei CPS-specific mAbs MCA147, 3C5, and 4C4, but did not react with the B. pseudomallei lipopolysaccharide-specific mAb Pp-PS-W. Whole genome sequencing of the B. cepacia isolates revealed the presence of genes demonstrating significant homology to those comprising the B. pseudomallei CPS biosynthetic gene cluster. Collectively, our results provide compelling evidence that B. cepacia strains expressing the same CPS as B. pseudomallei co-exist in the environment alongside B. pseudomallei. Since CPS is a target that is often used for presumptive identification of B. pseudomallei, it is possible that the occurrence of these unique B. cepacia strains may complicate the diagnosis of melioidosis.IMPORTANCEBurkholderia pseudomallei, the etiologic agent of melioidosis, is an important cause of morbidity and mortality in tropical and subtropical regions worldwide. The 6-deoxyheptan capsular polysaccharide (CPS) expressed by this bacterial pathogen is a promising target antigen that is useful for rapidly diagnosing melioidosis. Using assays incorporating CPS-specific monoclonal antibodies, we identified both clinical and environmental isolates of Burkholderia cepacia that express the same CPS antigen as B. pseudomallei. Because of this, it is important that staff working in melioidosis-endemic areas are aware that these strains co-exist in the same niches as B. pseudomallei and do not solely rely on CPS-based assays such as latex-agglutination, AMD Plus Rapid Tests, or immunofluorescence tests for the definitive identification of B. pseudomallei isolates.


Assuntos
Burkholderia cepacia , Burkholderia pseudomallei , Melioidose , Animais , Humanos , Burkholderia pseudomallei/genética , Melioidose/diagnóstico , Melioidose/microbiologia , Burkholderia cepacia/genética , Polissacarídeos , Anticorpos Monoclonais , Solo
15.
Ann Am Thorac Soc ; 21(2): 228-234, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37862263

RESUMO

Rationale: 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitor (statin) use is associated with a lower risk of incident pneumonia and, less robustly, with nonpulmonary infections. Whether statin use is associated with a lower risk of pneumonia than other clinical presentations of infection with the same pathogen is unknown. Objectives: To assess whether preadmission statin use is associated with a lower risk of pneumonia than nonpneumonia presentations among patients hospitalized with Burkholderia pseudomallei infection (melioidosis). Methods: We performed a secondary analysis of a prospective multicenter cohort study of patients hospitalized with culture-confirmed B. pseudomallei infection (melioidosis). We used Poisson regression with robust standard errors to test for an association between statin use and pneumonia. We then performed several sensitivity analyses that addressed healthy user effect and indication bias. Results: Of 1,372 patients with melioidosis enrolled in the parent cohort, 1,121 were analyzed. Nine hundred eighty (87%) of 1,121 were statin nonusers, and 141 (13%) of 1,121 were statin users. Forty-six (33%) of 141 statin users presented with pneumonia compared with 432 (44%) of 980 statin nonusers. Statin use was associated with a lower risk of pneumonia in unadjusted analysis (relative risk, 0.74; 95% confidence interval, 0.58-0.95; P = 0.02) and, after adjustment for demographic variables, comorbidities, environmental exposures, and symptom duration (relative risk, 0.73; 95% confidence interval, 0.57-0.94; P = 0.02). The results of sensitivity analyses, including active comparator analysis and inverse probability of treatment weighting, were consistent with the primary analysis. Conclusions: In hospitalized patients with melioidosis, preadmission statin use was associated with a lower risk of pneumonia than other clinical presentations of melioidosis, suggesting a lung-specific protective effect of statins.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Melioidose , Pneumonia , Humanos , Melioidose/tratamento farmacológico , Melioidose/epidemiologia , Melioidose/induzido quimicamente , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Estudos de Coortes , Estudos Prospectivos , Pneumonia/complicações , Pulmão
16.
Am J Respir Crit Care Med ; 209(3): 288-298, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812796

RESUMO

Rationale: The global burden of sepsis is greatest in low-resource settings. Melioidosis, infection with the gram-negative bacterium Burkholderia pseudomallei, is a frequent cause of fatal sepsis in endemic tropical regions such as Southeast Asia. Objectives: To investigate whether plasma metabolomics would identify biological pathways specific to melioidosis and yield clinically meaningful biomarkers. Methods: Using a comprehensive approach, differential enrichment of plasma metabolites and pathways was systematically evaluated in individuals selected from a prospective cohort of patients hospitalized in rural Thailand with infection. Statistical and bioinformatics methods were used to distinguish metabolomic features and processes specific to patients with melioidosis and between fatal and nonfatal cases. Measurements and Main Results: Metabolomic profiling and pathway enrichment analysis of plasma samples from patients with melioidosis (n = 175) and nonmelioidosis infections (n = 75) revealed a distinct immuno-metabolic state among patients with melioidosis, as suggested by excessive tryptophan catabolism in the kynurenine pathway and significantly increased levels of sphingomyelins and ceramide species. We derived a 12-metabolite classifier to distinguish melioidosis from other infections, yielding an area under the receiver operating characteristic curve of 0.87 in a second validation set of patients. Melioidosis nonsurvivors (n = 94) had a significantly disturbed metabolome compared with survivors (n = 81), with increased leucine, isoleucine, and valine metabolism, and elevated circulating free fatty acids and acylcarnitines. A limited eight-metabolite panel showed promise as an early prognosticator of mortality in melioidosis. Conclusions: Melioidosis induces a distinct metabolomic state that can be examined to distinguish underlying pathophysiological mechanisms associated with death. A 12-metabolite signature accurately differentiates melioidosis from other infections and may have diagnostic applications.


Assuntos
Burkholderia pseudomallei , Melioidose , Sepse , Humanos , Melioidose/diagnóstico , Melioidose/microbiologia , Estudos Prospectivos , Metabolômica
17.
bioRxiv ; 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38106061

RESUMO

Melioidosis is an often-fatal neglected tropical disease caused by an environmental bacterium Burkholderia pseudomallei. However, our understanding of the disease-causing bacterial lineages, their dissemination, and adaptive mechanisms remains limited. To address this, we conducted a comprehensive genomic analysis of 1,391 B. pseudomallei isolates collected from nine hospitals in northeast Thailand between 2015 and 2018, and contemporaneous isolates from neighbouring countries, representing the most densely sampled collection to date. Our study identified three dominant lineages with unique gene sets enhancing bacterial fitness, indicating lineage-specific adaptation strategies. Crucially, recombination was found to drive lineage-specific gene flow. Transcriptome analyses of representative clinical isolates from each dominant lineage revealed heightened expression of lineage-specific genes in environmental versus infection conditions, notably under nutrient depletion, highlighting environmental persistence as a key factor in the success of dominant lineages. The study also revealed the role of environmental factors - slope of terrain, altitude, direction of rivers, and the northeast monsoons - in shaping B. pseudomallei geographical dispersal. Collectively, our findings highlight persistence in the environment as a pivotal element facilitating B. pseudomallei spread, and as a prelude to exposure and infection, thereby providing useful insights for informing melioidosis prevention and control strategies.

18.
Biomedicines ; 11(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38001928

RESUMO

Central nervous system (CNS) melioidosis caused by Burkholderia pseudomallei is being increasingly reported. Because of the high mortality associated with CNS melioidosis, understanding the underlying mechanism of B. pseudomallei pathogenesis in the CNS needs to be intensively investigated to develop better therapeutic strategies against this deadly disease. The type VI secretion system (T6SS) is a multiprotein machine that uses a spring-like mechanism to inject effectors into target cells to benefit the infection process. In this study, the role of the T6SS accessory protein TagAB-5 in B. pseudomallei pathogenicity was examined using the human microglial cell line HCM3, a unique resident immune cell of the CNS acting as a primary mediator of inflammation. We constructed B. pseudomallei tagAB-5 mutant and complementary strains by the markerless allele replacement method. The effects of tagAB-5 deletion on the pathogenicity of B. pseudomallei were studied by bacterial infection assays of HCM3 cells. Compared with the wild type, the tagAB-5 mutant exhibited defective pathogenic abilities in intracellular replication, multinucleated giant cell formation, and induction of cell damage. Additionally, infection by the tagAB-5 mutant elicited a decreased production of interleukin 8 (IL-8) in HCM3, suggesting that efficient pathogenicity of B. pseudomallei is required for IL-8 production in microglia. However, no significant differences in virulence in the Galleria mellonella model were observed between the tagAB-5 mutant and the wild type. Taken together, this study indicated that microglia might be an important intracellular niche for B. pseudomallei, particularly in CNS infection, and TagAB-5 confers B. pseudomallei pathogenicity in these cells.

19.
Wellcome Open Res ; 8: 347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928212

RESUMO

Background: Melioidosis is a frequently fatal disease caused by an environmental bacterium Burkholderia pseudomallei. The disease is prevalent in northeast Thailand, particularly among rice field farmers who are at risk of bacterial exposure through contact with contaminated soil and water. However, not all exposure results in disease, and infection can manifest diverse outcomes. We postulate that genetic factors, whether from the bacterium, the host or the combination of both, may influence disease outcomes. To address this hypothesis, we aim to collect, sequence, and analyse genetic data from melioidosis patients and controls, along with isolates of B. pseudomallei obtained from patients. Additionally, we will study the metagenomics of the household water supply for both patients and controls, including the presence of B. pseudomallei. Methods: BurkHostGEN is an ongoing observational study being conducted at Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand. We are obtaining consent from 600 melioidosis patients and 700 controls, spanning both sexes, to collect 1 mL of blood for host DNA analysis, 3 mL of blood for RNA analysis, as well as 5 L of household water supply for metagenomic analysis. Additionally, we are isolating B. pseudomallei from the melioidosis patients to obtain bacterial DNA. This comprehensive approach will allow us to identify B. pseudomallei and their paired host genetic factors associated with disease acquisition and severity. Ethical approvals have been obtained for BurkHostGEN. Host and bacterial genetic data will be uploaded to European Genome-Phenome Archive (EGA) and European Nucleotide Archive (ENA), respectively. Conclusions: BurkHostGEN holds the potential to discover bacterial and host genetic factors associated with melioidosis infection and severity of illness. It can also support various study designs, including biomarker validation, disease pathogenesis, and epidemiological analysis not only for melioidosis but also for other infectious diseases.

20.
Sci Rep ; 13(1): 20764, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007490

RESUMO

The discovery of novel bioactive compounds produced by microorganisms holds significant potential for the development of therapeutics and agrochemicals. In this study, we conducted genome mining to explore the biosynthetic potential of entomopathogenic bacteria belonging to the genera Xenorhabdus and Photorhabdus. By utilizing next-generation sequencing and bioinformatics tools, we identified novel biosynthetic gene clusters (BGCs) in the genomes of the bacteria, specifically plu00736 and plu00747. These clusters were identified as unidentified non-ribosomal peptide synthetase (NRPS) and unidentified type I polyketide synthase (T1PKS) clusters. These BGCs exhibited unique genetic architecture and encoded several putative enzymes and regulatory elements, suggesting its involvement in the synthesis of bioactive secondary metabolites. Furthermore, comparative genome analysis revealed that these BGCs were distinct from previously characterized gene clusters, indicating the potential for the production of novel compounds. Our findings highlighted the importance of genome mining as a powerful approach for the discovery of biosynthetic gene clusters and the identification of novel bioactive compounds. Further investigations involving expression studies and functional characterization of the identified BGCs will provide valuable insights into the biosynthesis and potential applications of these bioactive compounds.


Assuntos
Bactérias , Genoma Bacteriano , Bactérias/genética , Biologia Computacional , Família Multigênica , Vias Biossintéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA