Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World J Gastroenterol ; 30(19): 2564-2574, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38817663

RESUMO

BACKGROUND: Cell division cyclin 25C (CDC25C) is a protein that plays a critical role in the cell cycle, specifically in the transition from the G2 phase to the M phase. Recent research has shown that CDC25C could be a potential therapeutic target for cancers, particularly for hepatocellular carcinoma (HCC). However, the specific regulatory mechanisms underlying the role of CDC25C in HCC tumorigenesis and development remain incompletely understood. AIM: To explore the impact of CDC25C on cell proliferation and apoptosis, as well as its regulatory mechanisms in HCC development. METHODS: Hepa1-6 and B16 cells were transduced with a lentiviral vector containing shRNA interference sequences (LV-CDC25C shRNA) to knock down CDC25C. Subsequently, a xenograft mouse model was established by subcutaneously injecting transduced Hepa1-6 cells into C57BL/6 mice to assess the effects of CDC25C knockdown on HCC development in vivo. Cell proliferation and migration were evaluated using a Cell Counting Kit-8 cell proliferation assays and wound healing assays, respectively. The expression of endoplasmic reticulum (ER) stress-related molecules (glucose-regulated protein 78, X-box binding protein-1, and C/EBP homologous protein) was measured in both cells and subcutaneous xenografts using quantitative real-time PCR (qRT-PCR) and western blotting. Additionally, apoptosis was investigated using flow cytometry, qRT-PCR, and western blotting. RESULTS: CDC25C was stably suppressed in Hepa1-6 and B16 cells through LV-CDC25C shRNA transduction. A xenograft model with CDC25C knockdown was successfully established and that downregulation of CDC25C expression significantly inhibited HCC growth in mice. CDC25C knockdown not only inhibited cell proliferation and migration but also significantly increased the ER stress response, ultimately promoting ER stress-induced apoptosis in HCC cells. CONCLUSION: The regulatory mechanism of CDC25C in HCC development may involve the activation of ER stress and the ER stress-induced apoptosis signaling pathway.


Assuntos
Apoptose , Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Estresse do Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Neoplasias Hepáticas , Camundongos Endogâmicos C57BL , Fosfatases cdc25 , Animais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Fosfatases cdc25/metabolismo , Fosfatases cdc25/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Camundongos , Humanos , RNA Interferente Pequeno/metabolismo , Masculino , Regulação Neoplásica da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinogênese/genética
2.
J Cancer ; 12(16): 4791-4809, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234850

RESUMO

Background: Hepatocellular carcinoma (HCC) presents a common malignant tumor worldwide. Although kinectin 1 (KTN1) is the most frequently identified antigen in HCC tissues, the detailed roles of KTN1 in HCC remain unknown. This study seeks to clarify the expression status and clinical value of KTN1 in HCC and to explore the complicated biological functions of KTN1 and its underlying mechanisms. Methods: In-house reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of KTN1 in HCC tissues. External gene microarrays and RNA-sequencing datasets were downloaded to confirm the expression patterns of KTN1. The prognostic ability of KTN1 in HCC was assessed by a Kaplan-Meier curve and a hazard ratio forest plot. The CRISPR/Cas9 gene-editing system was used to knock out KTN1 in Huh7 cells, which was verified by PCR-Sanger sequencing and western blotting. Assays of cell migration, invasion, viability, cell cycle, and apoptosis were conducted to explore the biological functions. RNA sequencing was performed to quantitatively analyze the functional deregulation in KTN1-knockout cells compared to Huh7-wild-type cells. Upregulated genes that co-expressed with KTN1 were identified from HCC tissues and were functionally annotated. Results: KTN1 expression was increased in HCC tissues (standardized mean difference [SMD] = 0.20 [0.04, 0.37]). High KTN1 expression was significantly correlated with poorer prognosis of HCC patients, and KTN1 may be an independent risk factor for HCC (pooled HRs = 1.31 [1.05, 1.64]). After KTN1-knockout, the viability, migration, and invasion ability of HCC cells were inhibited. The proportion of HCC cells in the G0-G1 phases increased after KTN1 knockout, which also elevated the apoptosis rates in HCC cells. Several cascades, including innate immune response, chemical carcinogenesis, and positive regulation of transcription by RNA polymerase II, were dramatically changed after KTN1 knockout. KTN1 primarily participated in the cell cycle, DNA replication, and microRNAs in cancer pathways in HCC tissues. Conclusion: Upregulation of KTN1 served as a promising prognosticator in HCC patients. KTN1 promotes the occurrence and deterioration of HCC by mediating cell survival, migration, invasion, cell cycle activation, and apoptotic inhibition. KTN1 may be a therapeutic target in HCC patients.

3.
Cancer Biother Radiopharm ; 35(4): 277-283, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32159381

RESUMO

Objective: This study aimed at investigating the specific roles of laminarin from seaweed (Laminaria japonica) in hepatocellular carcinoma (HCC) and its potential mechanisms related to senescence marker protein-30 (SMP-30). Materials and Methods: Human HCC cell lines, including Bel-7404 and HepG2, were incubated with different concentrations of laminarin (0, 5, 15, 25, 35, and 45 mg/mL). The cell viability and apoptosis rates were detected by WST-8 cell proliferation assay and flow cytometry, respectively. Hepa 1-6 tumor-bearing mice were injected with different concentrations of laminarin (400, 800, and 1200 mg/kg·d), and tumor volume and weight were measured. The expression of SMP-30 was detected in laminarin-treated Bel-7404 and HepG2 HCC cells and LO2 normal liver cells by quantitative real-time PCR and Western blotting. Results: The treatment with laminarin (48 h) significantly decreased the viability and increased the apoptosis rates of Bel-7404 and HepG2 cells in a dose-dependent manner. The injection of laminarin also significantly decreased the tumor volumes (beginning on the 10th day) and tumor weights (30 d post-injection) of mice in a dose-dependent manner. In addition, the treatment with laminarin (35 mg/mL for 48 h) significantly upregulated SMP-30 in Bel-7404 and HepG2 cells but not in LO2 cells. Conclusion: Laminarin inhibited the proliferation of Bel-7404 and HepG2 cells and inhibited the growth of tumors in Hepa 1-6 tumor-bearing mice by upregulating SMP-30.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Glucanos/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Alga Marinha/química , Animais , Carcinoma Hepatocelular/patologia , Proliferação de Células , Glucanos/farmacologia , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Microvasc Res ; 120: 8-12, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29777793

RESUMO

Homocysteine (Hcy) can induce atherosclerosis through the inflammatory response and DNA methylation disorder. Our recent study has reported a novel epigenetic modified gene related to atherosclerosis -SMAD7. To further understand the pathogenesis of atherosclerosis, the current study was designed to investigate an inflammatory role of Hcy in human umbilical vein smooth muscle cells (HUVSMCs) through interfering with SMAD7 methylation. Using MALDI-TOF MS, we found that Hcy increased DNA methylation levels of SMAD7 promoter in a dose and time-dependent manner in HUVSMCs. Meanwhile, both SMAD7 mRNA and protein levels were decreased along with the increase of Hcy concentrations and treating time. Decreased SMAD7 levels led to up regulation of pro-inflammatory cytokines (TNF-α and IL-1ß) expression in HUVSMCs. Furthermore, we found that activation of NF-κB pathway was the mechanism by which reduced Smad7 levels enhanced vascular inflammation. Thus, Hcy is able to activate NF-κB-mediated vascular inflammatory response via inducing hypermethylation of SMAD7 promoter in HUVSMCs. The in vitro findings supplement our recent clinical study that SMAD7 methylation as a novel marker in atherosclerosis and further elucidate the role of Hcy in atherogenesis.


Assuntos
Aterosclerose/induzido quimicamente , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Homocisteína/toxicidade , Mediadores da Inflamação/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Proteína Smad7/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Humanos , Interleucina-1beta/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Proteína Smad7/genética , Fator de Necrose Tumoral alfa/metabolismo , Veias Umbilicais/efeitos dos fármacos , Veias Umbilicais/metabolismo , Veias Umbilicais/patologia
5.
Chin Med ; 11: 3, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26843891

RESUMO

BACKGROUND: While DNA barcoding is an important technology for the authentication of the botanical origins of Chinese medicines, the suitable markers for DNA barcoding of the genus Uncaria have not been reported yet. This study aims to determine suitable markers for DNA barcoding of the genus Uncaria (Gouteng). METHODS: Genomic DNA was extracted from the freshly dried leaves of Uncaria plants by a Bioteke's Plant Genomic DNA Extraction Kit. Five candidate DNA barcode sites (ITS2, rbcL, psbA-trnH, ITS, and matK) were amplified by PCR with established primers. The purified PCR products were bidirectionally sequenced with appropriate amplification primers in an ABI-PRISM3730 instrument. The candidate DNA barcodes of 257 accessions of Uncaria in GenBank were aligned by ClustalW. Sequence assembly and consensus sequence generation were performed with CodonCode Aligner 3.7.1. The identification efficiency of the candidate DNA barcodes was evaluated with BLAST and nearest distance methods. The interspecific divergence and intraspecific variation were assessed by the Kimura 2-Parameter model. Genetic distances were computed with Molecular Evolutionary Genetics Analysis 6.0. RESULTS: The accessions of the five candidate DNA barcodes from 11 of 12 species of Uncaria in China and four species from other countries were included in the analysis, while 54 of total accessions were submitted to GenBank. In a comparison of the interspecific genetic distances of the five candidate barcodes, psbA-trnH exhibited the highest interspecific divergence based on interspecific distance, theta prime, and minimum interspecific distance, followed by ITS2. The distribution of the interspecific distance of ITS2 and psbA-trnH was higher than the corresponding intraspecific distance. Additionally, psbA-trnH showed 95.9 % identification efficiency by both the BLAST and nearest distance methods regardless of species or genus level. ITS2 exhibited 92.2 % identification efficiency by the nearest distance method, but 87 % by the BLAST method. CONCLUSION: While psbA-trnH and ITS2 (used alone) were applicable barcodes for species authentication of Uncaria, psbA-trnH was a more suitable barcode for authentication of Uncaria macrophylla.

6.
Mol Plant Microbe Interact ; 21(4): 411-23, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18321187

RESUMO

RsmA is an RNA-binding protein functioning as a global post-transcriptional regulator of various cellular processes in bacteria and has been demonstrated to be an important virulence regulator in many animal bacterial pathogens. However, its function in other phytopathogenic bacteria is unclear, except for the Erwinia carotovora RsmA, which acts as a negative virulence regulator. In this work, we investigated the function of the rsmA-like gene, named rsmA(Xcc), of the phytopathogen Xanthomonas campestris pv. campestris. Deletion of rsmA(Xcc) resulted in complete loss of virulence on the host plant Chinese radish, hypersensitive response on the nonhost plant pepper ECW-10R, and motility on the surface of an agar plate. The rsmA(Xcc) mutant displayed a significant reduction in the production of extracellular amylase, endoglucanase, and polysaccharide, but a significant increase in intracellular glycogen accumulation and an enhanced bacterial aggregation and cell adhesion. Microarray hybridization and semiquantitative reverse-transcription polymerase chain reaction analysis showed that deletion of rsmA(Xcc) led to significantly reduced expression of genes encoding the type III secretion system (T3SS), T3SS-effectors, and the bacterial aggregate dispersing enzyme endo-beta-1,4-mannanase. These results suggest that rsmA(Xcc) is involved in the control of various cellular processes, including pathogenesis of X. campestris pv. campestris.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Mutação , Xanthomonas campestris/genética , Sequência de Aminoácidos , Amilases/metabolismo , Proteínas de Bactérias/fisiologia , Celulase/metabolismo , Glicogênio/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Polissacarídeos/metabolismo , Raphanus/crescimento & desenvolvimento , Raphanus/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Virulência/genética , Xanthomonas campestris/metabolismo , Xanthomonas campestris/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA