Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 629(Pt B): 569-580, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36179577

RESUMO

High entropy oxides are promising catalysts for numerous catalytic oxidation processes with oxygen as the oxidant. However, most of them often show bulk morphologies, which hinders the full exposure of active sites. In this work, a unique 26-faceted polyhedral high entropy oxide MnNiCuZnCoOx-1000 (P-HEO) with highly active site exposure is fabricated via a mechanochemistry-assisted strategy. By employing such a strategy, the supersaturation of P-HEO during the crystal growth process is effectively reduced to form high-index facets, which is proved to be beneficial to the formation of high-index facets. Characterization results indicate that more oxygen vacancies are generated in P-HEO compared with the bulk counterparts. Density functional theory calculations reveal that the high-index facets {-211} can facilitate adsorption and activation of O2 because of the higher adsorption energy -2.23 eV compared with that of (111) surfaces (-1.79 eV), which induces significantly enhanced activity for organic sulfides oxidation. Interestingly, the synthesized P-HEO with high-index facets shows a 98.4% removal rate of dibenzothiophene from model oil within 8 h at 120 °C, which is much higher than that of the bulk counterparts (33.5%).

2.
Inorg Chem ; 61(1): 633-642, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34915701

RESUMO

Carbon-based catalysts are found to be promising metal-free species for aerobic oxidative desulfurization of fuel oil. Thus, a proper approach to promote their catalytic performances is very much in demand. In this contribution, a heteroatom bridging strategy is proposed to enhance the catalytic activities of carbon-based catalysts. As proof of the strategy, a series of boron (B)-doped graphite catalysts were synthesized. Detailed characterizations showed that the hetero-B atoms were uniformly dispersed in graphite. More importantly, it was found that the doped B atoms functioned as a bridge for electron transfer. With the existence of the heteroatom bridge, the activation of oxygen by graphite during the catalytic oxidation process was enhanced remarkably, leading to an ultradeep oxidative desulfurization performance. Moreover, the catalyst can be readily recycled five times without a significant decrease in desulfurization performance.

3.
J Colloid Interface Sci ; 584: 154-163, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069015

RESUMO

Designing atomically defective adsorbents with high specific surface area has emerged as a promising approach to improve sorption properties. Herein, hierarchical porous boron nitride nanosheets with boron vacancies (Bv-BNNSs) were in-situ synthesized via a one-step ZnCl2-assisted strategy. Being benefitted from the dual-functional template of zinc salt, highly-active boron vacancies and abundant hierarchical pores were simultaneously generated in the Bv-BNNSs framework. By employing the boron vacancies engineering strategy, the morphological and electronic structures were controllably tuned. Meanwhile, the specific surface area was improved to as high as 1104 m2/g. Owning to the abundance of accessible surface active-sites, the sorption capacity to antibiotic tetracycline (TC) on Bv-BNNSs was boosted by 38% compared to the pristine boron nitride nanosheets (BNNSs). Detailed fitting results showed that TC sorption on Bv-BNNSs obeyed the pseudo-second order kinetic equation and the Freundlich isotherm model. The pi - pi interaction with a multi-layered stacking form was proposed as the dominated sorption mechanism. Furthermore, DFT calculations verified that the interaction energy between Bv-BNNSs and TC was enhanced. The high activity, excellent selectivity, and remarkable durability of the Bv-BNNSs nanomaterial suggest the great potential in practical wastewater treatment.


Assuntos
Antibacterianos , Boro , Adsorção , Compostos de Boro , Porosidade
4.
J Mol Graph Model ; 100: 107694, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32739641

RESUMO

Carbon dioxide (CO2) is one of the main factors leading to the greenhouse effect, so the capture of CO2 gas is currently a hot spot of research. Hollow silica-based porous ionic liquids (HS-liquids) are porous liquids containing cavities that are not only fluid but also have a high specific surface area and were used for the capture of CO2. However, the mechanism of CO2 absorption by HS-liquids has not been studied. In this work, the mechanism of CO2 absorption by HS-liquids was systematic studied by density functional theory (DFT). First, five possible models for absorbing CO2 in HS-liquids were constructed and optimized. The interaction energies between HS-liquids and CO2 at different sites were obtained. Moreover, the effects of HS-liquids with different degrees of polymerization of polyethylene glycol and different alkyl chain lengths on CO2 absorption were also investigated. Results show that the strongest absorption site locates near the polyethylene glycol unit. Then, the electrostatic potential (ESP) and reduced density gradient (RDG) methods were employed to further understand the interaction nature between them. The results show that hydrogen bonding dominates the weak interaction between the HS-liquid and CO2.


Assuntos
Líquidos Iônicos , Dióxido de Carbono , Porosidade , Dióxido de Silício
5.
Food Chem ; 320: 126666, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32229400

RESUMO

A novel dendritic silicon dioxide nanocomposite coated with a highly dispersed graphene-like boron nitride nanosheet (g-BN(x)@SiO2) was in-situ synthesized and employed as a solid-phase extraction material for the Rhodamine B (RhB) and Rhodamine 6G (R6G) enrichment in food samples prior to their quantitation by HPLC. The structures and morphologies of g-BN(x)@SiO2 were characterized by XRD, FTIR, BET and TEM. The adsorption performance and mechanism were investigated and showed an enhanced maximum adsorption capacity of 625 mg/g for RhB on the nanocomposite loaded with 1% of g-BN via a fast, spontaneous process. Under optimal extraction conditions, this method showed low detection and quantification limits (2.8 µg/L for RhB, 2.1 µg/L for R6G and 9.2 µg/L for RhB, 6.9 µg/L for R6G, respectively), good repeatability (RSD% <3.7%), and satisfactory spiked recoveries of 94.8%-103.1% for RhB and R6G in real chili powder and beverage. Therefore, the g-BN(1%)@SiO2-based materials possess significant potential.


Assuntos
Análise de Alimentos/métodos , Nanocompostos/química , Rodaminas/isolamento & purificação , Extração em Fase Sólida/métodos , Adsorção , Bebidas/análise , Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Alimentos/análise , Grafite/química , Concentração de Íons de Hidrogênio , Limite de Detecção , Microscopia Eletrônica de Transmissão , Concentração Osmolar , Reprodutibilidade dos Testes , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
6.
RSC Adv ; 10(70): 42706-42717, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35514891

RESUMO

Carbon dioxide (CO2) emissions intensify the greenhouse effect so much that its capture and separation are needed. Porous liquids, possessing both the porous properties of solids and the fluidity of liquids, exhibit a wide range of applications in absorbing CO2, but the mechanism of gas capture and separation demands in-depth understanding. To this end, we provide a molecular perspective of gas absorption in a porous liquid composed of porous organic cages dissolved in a size-excluded solvent, hexachloropropene, by density functional theory for the first time. In this work, different conformations were considered comprehensively for three representative porous organic cages and molecules. Results show that chloroform, compared to CO2, tends to enter the cage due to stronger C-H⋯π interaction and the optimal capacity of each cage to absorb CO2 through hydrogen bonding and π-π interaction is 4, 2 and 4 equivalents, respectively. We hope that these discoveries will promote the synthesis of similar porous liquids that are used to capture and separate gases.

7.
RSC Adv ; 9(52): 30575-30580, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35530232

RESUMO

Adsorptive desulfurization is an effective technology for removing harmful sulfur under mild conditions. Carbon materials have many advantages and are often used in adsorption desulfurization research, but until now have been synthesized using complicated methods and have shown limited adsorption capacity. Using an NaHCO3-assisted leavening method, waste tires were in the current work used as raw materials to produce hierarchically porous carbon that exhibits a high specific surface area and abundant oxygen-containing functional groups. In contrast to the sulfur removal by the carbon material prepared using a commonly used method, the as-prepared carbon material shows excellent adsorption performance, and was able to achieve an ultra-deep desulfurization of pentanethiol, specifically removing up to 99.7% of the sulfur from a model fuel with an initial sulfur concentration of 28 ppm. Therefore, we have provided a simple method for synthesizing adsorbents with high adsorption performance, and we expect these adsorbents to be used for industrial adsorptive desulfurization.

8.
Nanotechnology ; 29(2): 025604, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29155413

RESUMO

Hexagonal boron nitride has been regarded to be an efficient catalyst in aerobic oxidation fields, but limited by the less-exposed active sites. In this contribution, we proposed a simple green liquid nitrogen gas exfoliation strategy for preparation of porous monolayer nanosheets (BN-1). Owing to the reduced layer numbers, decreased lateral sizes and artificially-constructed pores, increased exposure of active sites was expected, further contributed to an enhanced aerobic oxidative desulfurization (ODS) performance up to ∼98% of sulfur removal, achieving ultra-deep desulfurization. This work not only introduced an excellent catalyst for aerobic ODS, but also provided a strategy for construction of some other highly-efficient monolayer two-dimensional materials for enhanced catalytic performance.

9.
Small ; 13(44)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28980763

RESUMO

Tailoring terminated edge of hexagonal boron nitride (h-BN) for enhancing catalysis has turned to be an imperative for the rational design of a highly active aerobic catalyst. Herein, a tailoring N-terminated porous BN (P-BN) strategy is reported with a zinc (Zn) salt as a dual-functional template. The Zn salt acts as both an in situ template and an N-terminated defective edges directing agent. The zinc salt template turns to Zn nanoparticles (Zn NPs) and functions as physical spacers, which are subsequently removed at a higher temperature, for producing P-BN, whose high surface area is high to 1579 m2 g-1 . Moreover, because of the lower electronegativity of Zn, boron (B) atoms are partly replaced by Zn atoms and ultimately preferred to N-terminated edges with the volatilization of Zn NPs. Owing to the moderate dissociative energy of oxygen atoms on N-terminated edges, the N-terminated edges are proved to be the origin of an enhanced aerobic catalytic activity by density functional theory (DFT) calculations. Moreover, the DFT calculation result is experimentally verified.

10.
J Colloid Interface Sci ; 508: 121-128, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28822861

RESUMO

In this paper, the carbon-doped boron nitride nanoplate (C-BNNP) was prepared by pyrolyzing the precursor under N2 and served as an excellent adsorbent for removal of Rhodamine B (RhB). The structure and composition of C-BNNP were characterized and its adsorption behavior for RhB was investigated. Compared with boron nitride nanoplate (BNNP) which was synthesized under NH3, C-BNNP displayed an enhancement of the adsorption capacity for RhB (833mg/g). The adsorption activity was comprehensibly studied by kinetics, isotherm and thermodynamics. The adsorption kinetics followed pseudo-second-order model. The equilibrium adsorption data agreed well with the Langmuir isotherm. And the thermodynamics indicated that the adsorption process was a spontaneous, exothermic and physisorption process. In addition, the density functional theory was proposed that doping carbon in the BNNP decreased the chemical hardness of the adsorbent and enhanced the adsorption capacity of C-BNNP for RhB.

11.
Angew Chem Int Ed Engl ; 55(36): 10766-70, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27444210

RESUMO

The controlled exfoliation of hexagonal boron nitride (h-BN) into single- or few-layered nanosheets remains a grand challenge and becomes the bottleneck to essential studies and applications of h-BN. Here, we present an efficient strategy for the scalable synthesis of few-layered h-BN nanosheets (BNNS) using a novel gas exfoliation of bulk h-BN in liquid N2 (L-N2 ). The essence of this strategy lies in the combination of a high temperature triggered expansion of bulk h-BN and the cryogenic L-N2 gasification to exfoliate the h-BN. The produced BNNS after ten cycles (BNNS-10) consisted primarily of fewer than five atomic layers with a high mass yield of 16-20 %. N2 sorption and desorption isotherms show that the BNNS-10 exhibited a much higher specific surface area of 278 m(2) g(-1) than that of bulk BN (10 m(2) g(-1) ). Through the investigation of the exfoliated intermediates combined with a theoretical calculation, we found that the huge temperature variation initiates the expansion and curling of the bulk h-BN. Subseqently, the L-N2 penetrates into the interlayers of h-BN along the curling edge, followed by an immediate drastic gasification of L-N2 , further peeling off h-BN. This novel gas exfoliation of high surface area BNNS not only opens up potential opportunities for wide applications, but also can be extended to produce other layered materials in high yields.

12.
Small ; 12(26): 3535-42, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27225944

RESUMO

Solid electrolytes are one of the most promising electrolyte systems for safe lithium batteries, but the low ionic conductivity of these electrolytes seriously hinders the development of efficient lithium batteries. Here, a novel class of graphene-analogues boron nitride (g-BN) nanosheets confining an ultrahigh concentration of ionic liquids (ILs) in an interlayer and out-of-layer chamber to give rise to a quasi-liquid solid electrolyte (QLSE) is reported. The electron-insulated g-BN nanosheet host with a large specific surface area can confine ILs as much as 10 times of the host's weight to afford high ionic conductivity (3.85 × 10(-3) S cm(-1) at 25 °C, even 2.32 × 10(-4) S cm(-1) at -20 °C), which is close to that of the corresponding bulk IL electrolytes. The high ionic conductivity of QLSE is attributed to the enormous absorption for ILs and the confining effect of g-BN to form the ordered lithium ion transport channels in an interlayer and out-of-layer of g-BN. Furthermore, the electrolyte displays outstanding electrochemical properties and battery performance. In principle, this work enables a wider tunability, further opening up a new field for the fabrication of the next-generation QLSE based on layered nanomaterials in energy conversion devices.

13.
Chem Commun (Camb) ; 52(1): 144-7, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26502800

RESUMO

Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

14.
Chemistry ; 21(43): 15421-7, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26350466

RESUMO

Tungsten oxide nanoparticles (WOx NPs) are gaining increasing attention, but low stabiliity and poor dispersion of WOx NPs hinder their catalytic applications. Herein, WOx NPs were confined in graphene-analogous boron nitride (g-BN) by a one-step, in situ method at high temperature, which can enhance the interactions between WOx NPs and the support and control the sizes of WOx NPs in a range of about 4-5 nm. The as-prepared catalysts were applied in catalytic oxidation of aromatic sulfur compounds in which they showed high catalytic activity. A balance between the W loading and the size distribution of the WOx NPs could govern the catalytic activity. Furthermore, a synergistic effect between g-BN and WOx NPs also contributed to high catalytic activity. The reaction mechanism is discussed in detail and the catalytic scope was enlarged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA