Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 475(22): 3609-3628, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30341165

RESUMO

Cell walls of marine macroalgae are composed of diverse polysaccharides that provide abundant carbon sources for marine heterotrophic bacteria. Among them, Zobellia galactanivorans is considered as a model for studying algae-bacteria interactions. The degradation of typical algal polysaccharides, such as agars or alginate, has been intensively studied in this model bacterium, but the catabolism of plant-like polysaccharides is essentially uncharacterized. Here, we identify a polysaccharide utilization locus in the genome of Z. galactanivorans, induced by laminarin (ß-1,3-glucans), and containing a putative GH5 subfamily 4 (GH5_4) enzyme, currently annotated as a endoglucanase (ZgEngAGH5_4). A phylogenetic analysis indicates that ZgEngAGH5_4 was laterally acquired from an ancestral Actinobacteria We performed the biochemical and structural characterization of ZgEngAGH5_4 and demonstrated that this GH5 is, in fact, an endo-ß-glucanase, most active on mixed-linked glucan (MLG). Although ZgEngAGH5_4 and GH16 lichenases both hydrolyze MLG, these two types of enzymes release different series of oligosaccharides. Structural analyses of ZgEngAGH5_4 reveal that all the amino acid residues involved in the catalytic triad and in the negative glucose-binding subsites are conserved, when compared with the closest relative, the cellulase EngD from Clostridium cellulovorans, and some other GH5s. In contrast, the positive glucose-binding subsites of ZgEngAGH5_4 are different and this could explain the preference for MLG, with respect to cellulose or laminarin. Molecular dynamics computer simulations using different hexaoses reveal that the specificity for MLG occurs through the +1 and +2 subsites of the binding pocket that display the most important differences when compared with the structures of other GH5_4 enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Flavobacteriaceae/enzimologia , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Flavobacteriaceae/genética , Transferência Genética Horizontal , Glicosídeo Hidrolases/classificação , Glicosídeo Hidrolases/genética , Hidrólise , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Filogenia , Conformação Proteica , Água do Mar/microbiologia , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
2.
Microbiology (Reading) ; 164(3): 308-321, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29458680

RESUMO

Iridescence is an original type of colouration that is relatively widespread in nature but has been either incompletely described or entirely neglected in prokaryotes. Recently, we reported a brilliant 'pointillistic' iridescence in agar-grown colony biofilms of Cellulophaga lytica and some other marine Flavobacteria that exhibit gliding motility. Bacterial iridescence is created by a unique self-organization of sub-communities of cells, but the mechanisms underlying such living photonic crystals are unknown. In this study, we used Petri dish assays to screen a large panel of potential activators or inhibitors of C. lytica's iridescence. Derivatives potentially interfering with quorum-sensing and other communication or biofilm formation processes were tested, as well as metabolic poisons or algal exoproducts. We identified an indole derivative, 5-hydroxyindole (5HI, 250 µM) which inhibited both gliding and iridescence at the colonial level. 5HI did not affect growth or cell respiration. At the microscopic level, phase-contrast imaging confirmed that 5HI inhibits the gliding motility of cells. Moreover, the lack of iridescence correlated with a perturbation of self-organization of the cell sub-communities in both the WT and a gliding-negative mutant. This effect was proved using recent advances in machine learning (deep neuronal networks). In addition to its effect on colony biofilms, 5HI was found to stimulate biofilm formation in microplates. Our data are compatible with possible roles of 5HI or marine analogues in the eco-biology of iridescent bacteria.


Assuntos
Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Aprendizado Profundo , Flavobacteriaceae/efeitos dos fármacos , Indóis/farmacologia , Iridescência/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Flavobacteriaceae/química , Flavobacteriaceae/fisiologia , Ensaios de Triagem em Larga Escala , Interações Microbianas/efeitos dos fármacos , Microscopia de Contraste de Fase
3.
Genome Announc ; 5(36)2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883133

RESUMO

Some species of the genus Cellulophaga have been reported as having biotechnological interests and noteworthy physiological properties. We report here the draft genome sequence of Cellulophaga lytica CECT 8139, a bacterium that produces an intensely iridescent colony biofilm on agar surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA