Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796064

RESUMO

African swine fever virus (ASFV) causes a lethal hemorrhagic disease of domestic pigs, against which no vaccine is available. ASFV has a large, double-stranded DNA genome that encodes over 150 proteins. Replication takes place predominantly in the cytoplasm of the cell and involves complex interactions with host cellular components, including small noncoding RNAs (sncRNAs). A number of DNA viruses are known to manipulate sncRNA either by encoding their own or disrupting host sncRNA. To investigate the interplay between ASFV and sncRNAs, a study of host and viral small RNAs extracted from ASFV-infected primary porcine macrophages (PAMs) was undertaken. We discovered that ASFV infection had only a modest effect on host miRNAs, with only 6 miRNAs differentially expressed during infection. The data also revealed 3 potential novel small RNAs encoded by ASFV, ASFVsRNA1-3. Further investigation of ASFVsRNA2 detected it in lymphoid tissue from pigs with ASF. Overexpression of ASFVsRNA2 led to an up to 1-log reduction in ASFV growth, indicating that ASFV utilizes a virus-encoded small RNA to disrupt its own replication.IMPORTANCE African swine fever (ASF) poses a major threat to pig populations and food security worldwide. The disease is endemic to Africa and Eastern Europe and is rapidly emerging into Asia, where it has led to the deaths of millions of pigs in the last 12 months. The development of safe and effective vaccines to protect pigs against ASF has been hindered by lack of understanding of the complex interactions between ASFV and the host cell. We focused our work on characterizing the interactions between ASFV and sncRNAs. Although comparatively modest changes to host sncRNA abundances were observed upon ASFV infection, we discovered and characterized a novel functional ASFV-encoded sncRNA. The results from this study add important insights into ASFV host-pathogen interactions. This knowledge may be exploited to develop more effective ASFV vaccines that take advantage of the sncRNA system.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/genética , Genoma Viral , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Pequeno RNA não Traduzido/genética , RNA Viral/genética , Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/metabolismo , Animais , Regulação da Expressão Gênica , Tamanho do Genoma , Tecido Linfoide , Macrófagos , MicroRNAs/classificação , MicroRNAs/metabolismo , Cultura Primária de Células , Pequeno RNA não Traduzido/classificação , Pequeno RNA não Traduzido/metabolismo , RNA Viral/classificação , RNA Viral/metabolismo , Transdução de Sinais , Sus scrofa , Suínos , Replicação Viral
2.
J Virol ; 91(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978700

RESUMO

Many of the approximately 165 proteins encoded by the African swine fever virus (ASFV) genome do not have significant similarity to known proteins and have not been studied experimentally. One such protein is DP148R. We showed that the DP148R gene is transcribed at early times postinfection. Deletion of this gene did not reduce virus replication in macrophages, showing that it is not essential for replication in these cells. However, deletion of this gene from a virulent isolate, Benin 97/1, producing the BeninΔDP148R virus, dramatically reduced the virulence of the virus in vivo All pigs infected with the BeninΔDP148R virus survived infection, showing only transient mild clinical signs soon after immunization. Following challenge with the parental virulent virus, all pigs immunized by the intramuscular route (11/11) and all except one immunized by the intranasal route (5/6) survived. Mild or no clinical signs were observed after challenge. As expected, control nonimmune pigs developed signs of acute African swine fever (ASF). The virus genome and infectious virus were observed soon after immunization, coincident with the onset of clinical signs (∼106 genome copies or 50% tissue culture infective doses/ml). The levels of the virus genome declined over an extended period up to 60 days postimmunization. In contrast, infectious virus was no longer detectable by days 30 to 35. Gamma interferon (IFN-γ) was detected in serum between days 4 and 7 postimmunization, and IFN-γ-producing cells were detected in all pigs analyzed following stimulation of immune lymphocytes with whole virus. ASFV-specific antibodies were first detected from day 10 postimmunization.IMPORTANCE African swine fever (ASF) is endemic in Africa, parts of the Trans Caucasus, the Russian Federation, and several European countries. The lack of a vaccine hinders control. Many of the ASF virus genes lack similarity to known genes and have not been characterized. We have shown that one of these, DP148R, is transcribed early during virus replication in cells and can be deleted from the virus genome without reducing virus replication. The virus with the gene deletion, BeninΔDP148R, caused mild clinical signs in pigs and induced high levels of protection against challenge with the parental virulent virus. Therefore, deletion of this gene can provide a target for the rational development of vaccines.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/prevenção & controle , Deleção de Genes , Vacinas Virais/imunologia , Replicação Viral/genética , Administração Intranasal , África/epidemiologia , Febre Suína Africana/epidemiologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/imunologia , Animais , Anticorpos Antivirais/sangue , Europa (Continente)/epidemiologia , Genoma Viral , Injeções Intramusculares , Interferon gama/sangue , Ativação Linfocitária , Federação Russa/epidemiologia , Suínos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Virais/administração & dosagem , Virulência/genética
3.
Virus Res ; 173(1): 3-14, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23142553

RESUMO

African swine fever virus (ASFV) is a large icosahedral DNA virus which replicates predominantly in the cytoplasm of infected cells. The ASFV double-stranded DNA genome varies in length from about 170 to 193 kbp depending on the isolate and contains between 150 and 167 open reading frames. These are closely spaced and read from both DNA strands. The virus genome termini are covalently closed by imperfectly base-paired hairpin loops that are present in two forms that are complimentary and inverted with respect to each other. Adjacent to the termini are inverted arrays of different tandem repeats. Head to head concatemeric genome replication intermediates have been described. A similar mechanism of replication to Poxviruses has been proposed for ASFV. Virus genome transcription occurs independently of the host RNA polymerase II and virus particles contain all of the enzymes and factors required for early gene transcription. DNA replication begins in perinuclear factory areas about 6h post-infection although an earlier stage of nuclear DNA synthesis has been reported. The virus genome encodes enzymes required for transcription and replication of the virus genome and virion structural proteins. Enzymes that are involved in a base excision repair pathway may be an adaptation to enable virus replication in the oxidative environment of the macrophage cytoplasm. Other ASFV genes encode factors involved in evading host defence systems and modulating host cell function. Variation between the genomes of different ASFV isolates is most commonly due to gain or loss of members of multigene families, MGFs 100, 110, 300, 360, 505/530 and family p22. These are located within the left terminal 40kbp and right terminal 20kbp. ASFV is the only member of the Asfarviridae, which is one of the families within the nucleocytoplasmic large DNA virus superfamily.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Genoma Viral , Replicação Viral , Replicação do DNA , DNA Circular/genética , DNA Viral/genética , Ordem dos Genes , Genes Virais
4.
Emerg Infect Dis ; 17(4): 599-605, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21470447

RESUMO

African swine fever is widespread in Africa but has occasionally been introduced into other continents. In June 2007, African swine fever was isolated in the Caucasus Region of the Republic of Georgia and subsequently in neighboring countries (Armenia, Azerbaijan, and 9 states of the Russian Federation). Previous data for sequencing of 3 genes indicated that the Georgia 2007/1 isolate is closely related to isolates of genotype II, which has been identified in Mozambique, Madagascar, and Zambia. We report the complete genomic coding sequence of the Georgia 2007/1 isolate and comparison with other isolates. A genome sequence of 189,344 bp encoding 166 open reading frames (ORFs) was obtained. Phylogeny based on concatenated sequences of 125 conserved ORFs showed that this isolate clustered most closely with the Mkuzi 1979 isolate. Some ORFs clustered differently, suggesting that recombination may have occurred. Results provide a baseline for monitoring genomic changes in this virus.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/virologia , Genoma Viral/genética , Vírus da Febre Suína Africana/classificação , Vírus da Febre Suína Africana/isolamento & purificação , Animais , República da Geórgia , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de DNA , Suínos
5.
Vaccine ; 26(51): 6508-28, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-18838097

RESUMO

The recent advances in molecular genetics, pathogenesis and immunology have provided an optimal framework for developing novel approaches in the rational design of vaccines effective against viral epizootic diseases. This paper reviews most of the viral-vector based antigen delivery systems (ADSs) recently developed for vaccine testing in veterinary species, including attenuated virus and DNA and RNA viral vectors. Besides their usefulness in vaccinology, these ADSs constitute invaluable tools to researchers for understanding the nature of protective responses in different species, opening the possibility of modulating or potentiating relevant immune mechanisms involved in protection.


Assuntos
Antígenos Virais/administração & dosagem , Sistemas de Liberação de Medicamentos , Vacinas Virais/administração & dosagem , Viroses/veterinária , Animais , Antígenos Virais/imunologia , Vírus de DNA/imunologia , Vírus de RNA/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Viroses/prevenção & controle
6.
J Gen Virol ; 89(Pt 2): 397-408, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18198370

RESUMO

The genomic coding sequences, apart from the inverted terminal repeats and cross-links, have been determined for two African swine fever virus (ASFV) isolates from the same virus genotype, a non-pathogenic isolate from Portugal, OURT88/3, and a highly pathogenic isolate from West Africa, Benin 97/1. These genome sequences were annotated and compared with that of a tissue culture-adapted isolate, BA71V. The genomes range in length between 170 and 182 kbp and encode between 151 and 157 open reading frames (ORFs). Compared to the Benin 97/1 isolate, the OURT88/3 and BA71V isolates have deletions of 8-10 kbp that encode six copies of the multigene family (MGF) 360 and either one MGF 505/530 copy in the BA71V or two copies in the OURT88/3 isolate. The BA71V isolate has a deletion, close to the right end of the genome, of 3 kbp compared with the other isolates. The five ORFs in this region include an additional copy of an ORF similar to that encoding the p22 virus structural protein. The OURT88/3 isolate has interruptions in ORFs that encode a CD2-like and a C-type lectin protein. Variation between the genomes is observed in the number of copies of five different MGFs. The 109 non-duplicated ORFs conserved in the three genomes encode proteins involved in virus replication, virus assembly and modulation of the host's defences. These results provide information concerning the genetic variability of African swine fever virus isolates that differ in pathogenicity.


Assuntos
Vírus da Febre Suína Africana/genética , Fases de Leitura Aberta/genética , Virulência/genética , Febre Suína Africana , Vírus da Febre Suína Africana/patogenicidade , Animais , Linhagem Celular , Genoma Viral , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Suínos , Proteínas Virais/genética
7.
Nucleic Acids Res ; 31(2): E6-6, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12527795

RESUMO

Recombinant baculoviruses have established themselves as a favoured technology for the high-level expression of recombinant proteins. The construction of recombinant viruses, however, is a time consuming step that restricts consideration of the technology for high throughput developments. Here we use a targeted gene knockout technology to inactivate an essential viral gene that lies adjacent to the locus used for recombination. Viral DNA prepared from the knockout fails to initiate an infection unless rescued by recombination with a baculovirus transfer vector. Modified viral DNA allows 100% recombinant virus formation, obviates the need for further virus purification and offers an efficient means of mass parallel recombinant formation.


Assuntos
Baculoviridae/genética , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Recombinação Genética , Animais , Proteínas de Bactérias/genética , Linhagem Celular , DNA Viral/genética , Escherichia coli/genética , Exodesoxirribonucleases/genética , Expressão Gênica , Genes Virais/genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA