Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Genet ; 20(3): e1011155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466751

RESUMO

Antimicrobial peptides (AMPs) are at the interface of interactions between hosts and microbes and are therefore expected to be rapidly evolving in a coevolutionary arms race with pathogens. In contrast, previous work demonstrated that insect AMPs tend to evolve more slowly than the genome average. Metchikowin (Mtk) is a Drosophila AMP that has a single amino acid residue that segregates as either proline (P) or arginine (R) in populations of four different species, some of which diverged more than 10 million years ago. These results suggest that there is a distinct functional importance to each allele. The most likely hypotheses are driven by two main questions: does each allele have a different efficacy against different specific pathogens (specificity hypothesis)? Or, is one allele a more potent antimicrobial, but with a host fitness cost (autoimmune hypothesis)? To assess their functional differences, we created D. melanogaster lines with the P allele, R allele, or Mtk null mutation using CRISPR/Cas9 genome editing and performed a series of life history and infection assays to assess them. In males, testing of systemic immune responses to a repertoire of bacteria and fungi demonstrated that the R allele performs as well or better than the P and null alleles with most infections. Females show some results that contrast with males, with Mtk alleles either not contributing to survival or with the P allele outperforming the R allele. In addition, measurements of life history traits demonstrate that the R allele is more costly in the absence of infection for both sexes. These results are consistent with both the specificity hypothesis (either allele can perform better against certain pathogens depending on context), and the autoimmune hypothesis (the R allele is generally the more potent antimicrobial in males, and carries a fitness cost). These results provide strong in vivo evidence that differential fitness with or without infection and sex-based functional differences in alleles may be adaptive mechanisms of maintaining immune gene polymorphisms in contrast with expectations of rapid evolution. Therefore, a complex interplay of forces including pathogen species and host sex may lead to balancing selection for immune genotypes. Strikingly, this selection may act on even a single amino acid polymorphism in an AMP.


Assuntos
Anti-Infecciosos , Drosophila , Masculino , Feminino , Animais , Drosophila/genética , Drosophila melanogaster/genética , Alelos , Aminoácidos/genética , Polimorfismo Genético
2.
bioRxiv ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36712113

RESUMO

Antimicrobial peptides (AMPs) are at the interface of interactions between hosts and microbes and are therefore expected to be fast evolving in a coevolutionary arms race with pathogens. In contrast, previous work demonstrated that one AMP, Metchikowin (Mtk), has a single residue that segregates as either proline (P) or arginine (R) in populations of four different Drosophila species, some of which diverged more than 10 million years ago. The recurrent finding of this polymorphism regardless of geography or host species, coupled with evidence of balancing selection in Drosophila AMPs, suggest there is a distinct functional importance to each allele. The most likely hypotheses involve alleles having specificity to different pathogens or the more potent allele conferring a cost on the host. To assess their functional differences, we created D. melanogaster lines with the P allele, R allele, or Mtk null mutation using CRISPR/Cas9 genome editing. Here, we report results from experiments assessing the two hypotheses using these lines. In males, testing of systemic immune responses to a repertoire of bacteria and fungi demonstrated that the R allele performs as well or better than the P and null alleles with most infections. With some pathogens, however, females show results in contrast with males where Mtk alleles either do not contribute to survival or where the P allele outperforms the R allele. In addition, measurements of life history traits demonstrate that the R allele is more costly in the absence of infection for both sexes. These results provide strong in vivo evidence that differential fitness with or without infection and sex-based functional differences in alleles may be adaptive mechanisms of maintaining immune gene polymorphisms in contrast with expectations of rapid evolution. Therefore, a complex interplay of forces including pathogen species and host sex may lead to balancing selection for immune genotypes. Strikingly, this selection may act on even a single amino acid polymorphism in an AMP.

3.
Water Res ; 211: 118032, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35042077

RESUMO

To assist public health responses to COVID-19, wastewater-based epidemiology (WBE) is being utilised internationally to monitor SARS-CoV-2 infections at the community level. However, questions remain regarding the sensitivity of WBE and its use in low prevalence settings. In this study, we estimated the total number of COVID-19 cases required for detection of SARS-CoV-2 RNA in wastewater. To do this, we leveraged a unique situation where, over a 4-month period, all symptomatic and asymptomatic cases, in a population of approximately 120,000, were precisely known and mainly located in a single managed isolation and quarantine facility (MIQF) building. From 9 July to 6 November 2020, 24-hr composite wastewater samples (n = 113) were collected daily from the sewer outside the MIQF, and from the municipal wastewater treatment plant (WWTP) located 5 km downstream. New daily COVID-19 cases at the MIQF ranged from 0 to 17, and for most of the study period there were no cases outside the MIQF identified. SARS-CoV-2 RNA was detected in 54.0% (61/113) at the WWTP, compared to 95.6% (108/113) at the MIQF. We used logistic regression to estimate the shedding of SARS-CoV-2 RNA into wastewater based on four infectious shedding models. With a total of 5 and 10 COVID-19 infectious cases per 100,000 population (0.005% and 0.01% prevalence) the predicated probability of SARS-CoV-2 RNA detection at the WWTP was estimated to be 28 and 41%, respectively. When a proportional shedding model was used, this increased to 58% and 87% for 5 and 10 cases, respectively. In other words, when 10 individuals were actively shedding SARS-CoV-2 RNA in a catchment of 100,000 individuals, there was a high likelihood of detecting viral RNA in wastewater. SARS-CoV-2 RNA detections at the WWTP were associated with increasing COVID-19 cases. Our results show that WBE provides a reliable and sensitive platform for detecting infections at the community scale, even when case prevalence is low, and can be of use as an early warning system for community outbreaks.


Assuntos
COVID-19 , RNA Viral , Humanos , Prevalência , RNA Viral/genética , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
4.
Genes (Basel) ; 11(2)2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098395

RESUMO

Dissecting the genetic basis of natural variation in disease response in hosts provides insights into the coevolutionary dynamics of host-pathogen interactions. Here, a genome-wide association study of Drosophila melanogaster survival after infection with the Gram-positive entomopathogenic bacterium Enterococcus faecalis is reported. There was considerable variation in defense against E. faecalis infection among inbred lines of the Drosophila Genetics Reference Panel. We identified single nucleotide polymorphisms associated with six genes with a significant (p < 10-08, corresponding to a false discovery rate of 2.4%) association with survival, none of which were canonical immune genes. To validate the role of these genes in immune defense, their expression was knocked-down using RNAi and survival of infected hosts was followed, which confirmed a role for the genes krishah and S6k in immune defense. We further identified a putative role for the Bomanin gene BomBc1 (also known as IM23), in E. faecalis infection response. This study adds to the growing set of association studies for infection in Drosophila melanogaster and suggests that the genetic causes of variation in immune defense differ for different pathogens.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Variação Genética/genética , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/microbiologia , Enterococcus faecalis/genética , Enterococcus faecalis/imunologia , Enterococcus faecalis/patogenicidade , Estudo de Associação Genômica Ampla , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Seleção Genética/genética
5.
Genome Biol Evol ; 11(9): 2691-2701, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504505

RESUMO

Genes involved in immune defense against pathogens provide some of the most well-known examples of both directional and balancing selection. Antimicrobial peptides (AMPs) are innate immune effector genes, playing a key role in pathogen clearance in many species, including Drosophila. Conflicting lines of evidence have suggested that AMPs may be under directional, balancing, or purifying selection. Here, we use both a linear model and control-gene-based approach to show that balancing selection is an important force shaping AMP diversity in Drosophila. In Drosophila melanogaster, this is most clearly observed in ancestral African populations. Furthermore, the signature of balancing selection is even more striking once background selection has been accounted for. Balancing selection also acts on AMPs in Drosophila mauritiana, an isolated island endemic separated from D. melanogaster by about 4 Myr of evolution. This suggests that balancing selection may be broadly acting to maintain adaptive diversity in Drosophila AMPs, as has been found in other taxa.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Drosophila/genética , Drosophila/classificação , Drosophila/genética , Evolução Molecular , Animais , Drosophila melanogaster/genética , Seleção Genética
6.
Data Brief ; 18: 1562-1566, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29904657

RESUMO

This article provides data on primer sequences used to amplify the innate immune genes RIG-I and Mx and a set of normalizing reference genes in mallards (Anas platyrhynchos), and shows which reference genes are stable, per tissue, for our experimental settings. Data on the expressional changes of these two genes over a time-course of infection with low pathogenic avian influenza virus (LPAI) are provided. Individual-level data are also presented, including LPAI infection load, and per tissue gene expression of RIG-I and Mx. Gene expression in two outlier individuals is explored in more depth.

7.
Mol Immunol ; 95: 64-72, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29407578

RESUMO

The vertebrate innate immune system provides hosts with a rapid, non-specific response to a wide range of invading pathogens. However, the speed and duration of innate responses will be influenced by the co-evolutionary dynamics of specific host-pathogen combinations. Here, we show that low pathogenic avian influenza virus (LPAI) subtype H1N1 elicits a strong but extremely transient innate immune response in its main wildlife reservoir, the mallard (Anas platyrhynchos). Using a series of experimental and methodological improvements over previous studies, we followed the expression of retinoic acid inducible gene 1 (RIG-I) and myxovirus resistance gene (Mx) in mallards semi-naturally infected with low pathogenic H1N1. One day post infection, both RIG-I and Mx were significantly upregulated in all investigated tissues. By two days post infection, the expression of both genes had generally returned to basal levels, and remained so for the remainder of the experiment. This is despite the fact that birds continued to actively shed viral particles throughout the study period. We additionally show that the spleen plays a particularly active role in the innate immune response to LPAI. Waterfowl and avian influenza viruses have a long co-evolutionary history, suggesting that the mallard innate immune response has evolved to provide a minimum effective response to LPAIs such that the viral infection is brought under control while minimising the damaging effects of a sustained immune response.


Assuntos
Patos , Imunidade Inata/fisiologia , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Aviária/imunologia , Animais , Patos/genética , Patos/imunologia , Patos/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Influenza Aviária/genética , Masculino , Moléculas com Motivos Associados a Patógenos/metabolismo , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Fatores de Transcrição/genética
8.
Mol Biol Evol ; 33(12): 3075-3087, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27524825

RESUMO

In disease dynamics, high immune gene diversity can confer a selective advantage to hosts in the face of a rapidly evolving and diverse pathogen fauna. This is supported empirically for genes involved in pathogen recognition and signalling. In contrast, effector genes involved in pathogen clearance may be more constrained. ß-Defensins are innate immune effector genes; their main mode of action is via disruption of microbial membranes. Here, five ß-defensin genes were characterized in mallards (Anas platyrhynchos) and other waterfowl; key reservoir species for many zoonotic diseases. All five genes showed remarkably low diversity at the individual-, population-, and species-level. Furthermore, there was widespread sharing of identical alleles across species divides. Thus, specific ß-defensin alleles were maintained not only spatially but also over long temporal scales, with many amino acid residues being fixed across all species investigated. Purifying selection to maintain individual, highly efficacious alleles was the primary evolutionary driver of these genes in waterfowl. However, we also found evidence for balancing selection acting on the most recently duplicated ß-defensin gene (AvBD3b). For this gene, we found that amino acid replacements were more likely to be radical changes, suggesting that duplication of ß-defensin genes allows exploration of wider functional space. Structural conservation to maintain function appears to be crucial for avian ß-defensin effector molecules, resulting in low tolerance for new allelic variants. This contrasts with other types of innate immune genes, such as receptor and signalling molecules, where balancing selection to maintain allelic diversity has been shown to be a strong evolutionary force.


Assuntos
Anseriformes/genética , Anseriformes/imunologia , beta-Defensinas/genética , Alelos , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Evolução Molecular , Duplicação Gênica , Variação Genética , Imunidade Inata/genética , Família Multigênica/genética , Filogenia , Seleção Genética , beta-Defensinas/imunologia
9.
PLoS One ; 11(2): e0149454, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26886224

RESUMO

Determining which reference genes have the highest stability, and are therefore appropriate for normalising data, is a crucial step in the design of real-time quantitative PCR (qPCR) gene expression studies. This is particularly warranted in non-model and ecologically important species for which appropriate reference genes are lacking, such as the mallard--a key reservoir of many diseases with relevance for human and livestock health. Previous studies assessing gene expression changes as a consequence of infection in mallards have nearly universally used ß-actin and/or GAPDH as reference genes without confirming their suitability as normalisers. The use of reference genes at random, without regard for stability of expression across treatment groups, can result in erroneous interpretation of data. Here, eleven putative reference genes for use in gene expression studies of the mallard were evaluated, across six different tissues, using a low pathogenic avian influenza A virus infection model. Tissue type influenced the selection of reference genes, whereby different genes were stable in blood, spleen, lung, gastrointestinal tract and colon. ß-actin and GAPDH generally displayed low stability and are therefore inappropriate reference genes in many cases. The use of different algorithms (GeNorm and NormFinder) affected stability rankings, but for both algorithms it was possible to find a combination of two stable reference genes with which to normalise qPCR data in mallards. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies in ducks. The fact that nearly all previous studies of the influence of pathogen infection on mallard gene expression have used a single, non-validated reference gene is problematic. The toolkit of putative reference genes provided here offers a solid foundation for future studies of gene expression in mallards and other waterfowl.


Assuntos
Patos/genética , Regulação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Animais , Estudos de Associação Genética , Padrões de Referência , Software
10.
PLoS One ; 10(11): e0141853, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26555275

RESUMO

The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with ß-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.


Assuntos
Perfilação da Expressão Gênica/métodos , Expressão Gênica , Genes , Reação em Cadeia da Polimerase em Tempo Real/normas , Animais , Humanos , Mamíferos/classificação , Mamíferos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Projetos de Pesquisa , Manejo de Espécimes , Estatísticas não Paramétricas , Transcrição Gênica
11.
Proc Biol Sci ; 279(1734): 1724-30, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22130602

RESUMO

Understanding causes of variation in promiscuity within populations remain a major challenge. While most studies have focused on quantifying fitness costs and benefits of promiscuous behaviour, an alternative possibility--that variation in promiscuity within populations is maintained because of linkage with other traits-has received little attention. Here, we examine whether promiscuity in male and female great tits (Parus major)--quantified as extra-pair paternity (EPP) within and between nests--is associated with variation in a well-documented personality trait: exploration behaviour in a novel environment. Exploration behaviour has been shown to correlate with activity levels, risk-taking and boldness, and these are behaviours that may plausibly influence EPP. Exploration behaviour correlated positively with paternity gained outside the social pair among males in our population, but there was also a negative correlation with paternity in the social nest. Hence, while variation in male personality predicted the relative importance of paternity gain within and outside the pair bond, total paternity gained was unrelated to exploration behaviour. We found evidence that males paired with bold females were more likely to sire extra-pair young. Our data thus demonstrate a link between personality and promiscuity, with no net effects on reproductive success, suggesting personality-dependent mating tactics, in contrast with traditional adaptive explanations for promiscuity.


Assuntos
Passeriformes/fisiologia , Paternidade , Personalidade/fisiologia , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Comportamento Exploratório/fisiologia , Feminino , Masculino
12.
Mol Biol Evol ; 28(6): 1835-46, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21228400

RESUMO

A major theoretical consequence of selection at a locus is the genetic hitchhiking of linked sites (selective sweep). The extent of hitchhiking around a gene is related to the strength of selection and the rate of recombination, with its impact diminishing with distance from the selected site. At the Rop-1 locus of the sheep blowfly, Lucilia cuprina, polymorphisms at two different sites within the LcαE7 gene encode forms of the protein that confer organophosphorus insecticide resistance. To assess the impact of selection at these two sites on variation around LcαE7, we sequenced regions within six other genes along chromosome IV across isogenic (IV) strains of L. cuprina. High levels of linkage disequilibrium, characterized by low haplotype number (K) and diversity (H), and significant R(2) values were observed for two genes, LcαE1 and LcαE10, both members of the same α-esterase gene cluster as LcαE7. A significant R(2) value was also observed for a gene predicted to be the next closest to LcαE7, AL03, but not for any of the other genes, LcRpL13a, Lcdsx, or LcAce. Skews in the site frequency spectra toward high-frequency variants were significant for LcαE1 (Fay and Wu's H = -2.91), LcαE10 (H = -1.85), and Lcdsx (H = -2.00). Since the selective sweeps, two forms of likely returning variation were observed, including variation in microsatellites in an intron of LcαE10 and a recombination event between LcαE7 and LcαE10. These data suggest that two incomplete soft sweeps have occurred at LcαE7 that have significantly affected variation across, and beyond, the α-esterase gene cluster of L. cuprina. The speed and impact of these selective sweeps on surrounding genomic variation and the ability of L. cuprina to respond to future environmental challenges are discussed.


Assuntos
Dípteros/genética , Esterases/genética , Genes de Insetos/genética , Variação Genética , Resistência a Inseticidas/genética , Família Multigênica/genética , Animais , Sequência de Bases , Análise por Conglomerados , Dípteros/enzimologia , Evolução Molecular , Haplótipos/genética , Inseticidas , Desequilíbrio de Ligação/genética , Masculino , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Polimorfismo Genético , Alinhamento de Sequência
13.
Am Nat ; 176(2): 178-87, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20528475

RESUMO

In many socially monogamous animals, females engage in extrapair copulation (EPC), causing some broods to contain both within-pair and extrapair young (EPY). The proportion of all young that are EPY varies across populations and species. Because an EPC that does not result in EPY leaves no forensic trace, this variation in the proportion of EPY reflects both variation in the tendency to engage in EPC and variation in the extrapair fertilization (EPF) process across populations and species. We analyzed data on the distribution of EPY in broods of four passerines (blue tit, great tit, collared flycatcher, and pied flycatcher), with 18,564 genotyped nestlings from 2,346 broods in two to nine populations per species. Our Bayesian modeling approach estimated the underlying probability function of EPC (assumed to be a Poisson function) and conditional binomial EPF probability. We used an information theoretical approach to show that the expected distribution of EPC per female varies across populations but that EPF probabilities vary on the above-species level (tits vs. flycatchers). Hence, for these four passerines, our model suggests that the probability of an EPC mainly is determined by ecological (population-specific) conditions, whereas EPF probabilities reflect processes that are fixed above the species level.


Assuntos
Passeriformes/fisiologia , Comportamento Sexual Animal , Animais , Teorema de Bayes , Feminino , Genótipo , Masculino , Passeriformes/genética , Dinâmica Populacional , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA