Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anat ; 239(6): 1241-1255, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34713444

RESUMO

A century ago this year, Pío del Río-Hortega (1921) coined the term 'oligodendroglia' for the 'interfascicular glia' with very few processes, launching an extensive discovery effort on his new cell type. One hundred years later, we review his original contributions to our understanding of the system of cytoplasmic channels within myelin in the context of what we observe today using light and electron microscopy of genetically encoded fluorescent reporters and immunostaining. We use the term myelinic channel system to describe the cytoplasm-delimited spaces associated with myelin; being the paranodal loops, inner and outer tongues, cytoplasm-filled spaces through compact myelin and further complex motifs associated to the sheath. Using a central nervous system myelinating cell culture model that contains all major neural cell types and produces compact myelin, we find that td-tomato fluorescent protein delineates the myelinic channel system in a manner reminiscent of the drawings of adult white matter by Río-Hortega, despite that he questioned whether some cytoplasmic figures he observed represented artefact. Together, these data lead us to propose a slightly revised model of the 'unrolled' sheath. Further, we show that the myelinic channel system, while relatively stable, can undergo subtle dynamic shape changes over days. Importantly, we capture an under-appreciated complexity of the myelinic channel system in mature myelin sheaths.


Assuntos
Sistema Nervoso Central , Bainha de Mielina , Citoplasma , Microscopia Eletrônica , Oligodendroglia
2.
Acta Neuropathol Commun ; 8(1): 135, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792006

RESUMO

Progressive multi-focal leukoencephalopathy (PML) is a potentially fatal encephalitis caused by JC polyomavirus (JCV). PML principally affects people with a compromised immune system, such as patients with multiple sclerosis (MS) receiving treatment with natalizumab. However, intrathecal synthesis of lipid-reactive IgM in MS patients is associated with a markedly lower incidence of natalizumab-associated PML compared to those without this antibody repertoire. Here we demonstrate that a subset of lipid-reactive human and murine IgMs induce a functional anti-viral response that inhibits replication of encephalitic Alpha and Orthobunyaviruses in multi-cellular central nervous system cultures. These lipid-specific IgMs trigger microglia to produce IFN-ß in a cGAS-STING-dependent manner, which induces an IFN-α/ß-receptor 1-dependent antiviral response in glia and neurons. These data identify lipid-reactive IgM as a mediator of anti-viral activity in the nervous system and provide a rational explanation why intrathecal synthesis of lipid-reactive IgM correlates with a reduced incidence of iatrogenic PML in MS.


Assuntos
Autoanticorpos/líquido cefalorraquidiano , Imunoglobulina M/líquido cefalorraquidiano , Leucoencefalopatia Multifocal Progressiva/imunologia , Lipídeos/imunologia , Esclerose Múltipla , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Humanos , Hospedeiro Imunocomprometido/imunologia , Imunoglobulina M/imunologia , Fatores Imunológicos/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Natalizumab/efeitos adversos , Ratos , Ratos Sprague-Dawley
3.
Immunol Cell Biol ; 93(2): 167-76, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25348934

RESUMO

Chemokine-directed leukocyte migration is a critical component of all innate and adaptive immune responses. The atypical chemokine receptor ACKR2 is expressed by lymphatic endothelial cells and scavenges pro-inflammatory CC chemokines to indirectly subdue leukocyte migration. This contributes to the resolution of acute inflammatory responses in vivo. ACKR2 is also universally expressed by innate-like B cells, suppressing their responsiveness to the non-ACKR2 ligand CXCL13, and controlling their distribution in vivo. The role of ACKR2 in autoimmunity remains relatively unexplored, although Ackr2 deficiency reportedly lessens the clinical symptoms of experimental autoimmune encephalomyelitis induced by immunization with encephalogenic peptide (MOG(35-55)). This was attributed to poor T-cell priming stemming from the defective departure of dendritic cells from the site of immunization. However, we report here that Ackr2-deficient mice, on two separate genetic backgrounds, are not less susceptible to autoimmunity induced by immunization, and in some cases develop enhanced clinical symptoms. Moreover, ACKR2 deficiency does not suppress T-cell priming in response to encephalogenic peptide (MOG(35-55)), and responses to protein antigen (collagen or MOG(1-125)) are characterized by elevated interleukin-17 production. Interestingly, after immunization with protein, but not peptide, antigen, Ackr2 deficiency was also associated with an increase in lymph node B cells expressing granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine that enhances T helper type 17 (Th17) cell development and survival. Thus, Ackr2 deficiency does not suppress autoreactive T-cell priming and autoimmune pathology, but can enhance T-cell polarization toward Th17 cells and increase the abundance of GM-CSF(+) B cells in lymph nodes draining the site of immunization.


Assuntos
Autoantígenos/imunologia , Colágeno/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Receptores de Quimiocinas/metabolismo , Células Th17/imunologia , Animais , Anticorpos/imunologia , Artrite Experimental/imunologia , Artrite Experimental/patologia , Encefalomielite Autoimune Experimental/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Imunidade , Imunização , Interleucina-17/biossíntese , Articulações/imunologia , Articulações/patologia , Linfonodos/metabolismo , Linfonodos/patologia , Contagem de Linfócitos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/imunologia , Receptores de Quimiocinas/deficiência , Regulação para Cima
4.
Ann Neurol ; 74(6): 815-25, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038279

RESUMO

OBJECTIVE: To explore the presence and consequences of tissue hypoxia in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). METHODS: EAE was induced in Dark Agouti rats by immunization with recombinant myelin oligodendrocyte glycoprotein and adjuvant. Tissue hypoxia was assessed in vivo using 2 independent methods: an immunohistochemical probe administered intravenously, and insertion of a physical, oxygen-sensitive probe into the spinal cord. Indirect markers of tissue hypoxia (eg, expression of hypoxia-inducible factor-1α [HIF-1α], vessel diameter, and number of vessels) were also assessed. The effects of brief (1 hour) and continued (7 days) normobaric oxygen treatment on function were evaluated in conjunction with other treatments, namely administration of a mitochondrially targeted antioxidant (MitoQ) and inhibition of inducible nitric oxide synthase (1400W). RESULTS: Observed neurological deficits were quantitatively, temporally, and spatially correlated with spinal white and gray matter hypoxia. The tissue expression of HIF-1α also correlated with loss of function. Spinal microvessels became enlarged during the hypoxic period, and their number increased at relapse. Notably, oxygen administration significantly restored function within 1 hour, with improvement persisting at least 1 week with continuous oxygen treatment. MitoQ and 1400W also caused a small but significant improvement. INTERPRETATION: We present chemical, physical, immunohistochemical, and therapeutic evidence that functional deficits caused by neuroinflammation can arise from tissue hypoxia, consistent with an energy crisis in inflamed central nervous system tissue. The neurological deficit was closely correlated with spinal white and gray matter hypoxia. This realization may indicate new avenues for therapy of neuroinflammatory diseases such as MS.


Assuntos
Encefalomielite Autoimune Experimental/fisiopatologia , Hipóxia/fisiopatologia , Inflamação/fisiopatologia , Oxigênio/farmacologia , Doenças da Medula Espinal/fisiopatologia , Amidinas/farmacologia , Animais , Benzilaminas/farmacologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Hipóxia/induzido quimicamente , Hipóxia/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Micronutrientes/farmacologia , Compostos Organofosforados/farmacologia , Oxigênio/administração & dosagem , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Índice de Gravidade de Doença , Método Simples-Cego , Doenças da Medula Espinal/induzido quimicamente , Doenças da Medula Espinal/tratamento farmacológico , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA