Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(13): e2212389120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36947511

RESUMO

Biological tissues acquire reproducible shapes during development through dynamic cell behaviors. Most of these behaviors involve the remodeling of cell-cell contacts. During epithelial morphogenesis, contractile actomyosin networks remodel cell-cell contacts by shrinking and extending junctions between lateral cell surfaces. However, actomyosin networks not only generate mechanical stresses but also respond to them, confounding our understanding of how mechanical stresses remodel cell-cell contacts. Here, we develop a two-point optical manipulation method to impose different stress patterns on cell-cell contacts in the early epithelium of the Drosophila embryo. The technique allows us to produce junction extension and shrinkage through different push and pull manipulations at the edges of junctions. We use these observations to expand classical vertex-based models of tissue mechanics, incorporating negative and positive mechanosensitive feedback depending on the type of remodeling. In particular, we show that Myosin-II activity responds to junction strain rate and facilitates full junction shrinkage. Altogether our work provides insight into how stress produces efficient deformation of cell-cell contacts in vivo and identifies unanticipated mechanosensitive features of their remodeling.


Assuntos
Comunicação Celular , Epitélio , Junções Intercelulares , Mecanotransdução Celular , Estresse Mecânico , Animais , Actomiosina/fisiologia , Comunicação Celular/fisiologia , Drosophila , Embrião não Mamífero , Epitélio/fisiologia , Junções Intercelulares/fisiologia , Miosina Tipo I/fisiologia , Pinças Ópticas
2.
Methods Mol Biol ; 2600: 107-118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587093

RESUMO

Laser manipulation is widely used to study mechanics from the molecular to the tissue scale. We implemented optical tweezers to directly manipulate single cell-cell junctions in a developing tissue. We further extended the approach to two-point laser manipulation to enable extensive remodeling of cell-cell junctions. Here, we describe two-point laser manipulation and its implementation to probe the mechanics of cell junctions in the Drosophila embryo.


Assuntos
Drosophila , Junções Intercelulares , Animais , Epitélio , Lasers , Pinças Ópticas
3.
Elife ; 112022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35920628

RESUMO

Human muscle is a hierarchically organised tissue with its contractile cells called myofibers packed into large myofiber bundles. Each myofiber contains periodic myofibrils built by hundreds of contractile sarcomeres that generate large mechanical forces. To better understand the mechanisms that coordinate human muscle morphogenesis from tissue to molecular scales, we adopted a simple in vitro system using induced pluripotent stem cell-derived human myogenic precursors. When grown on an unrestricted two-dimensional substrate, developing myofibers spontaneously align and self-organise into higher-order myofiber bundles, which grow and consolidate to stable sizes. Following a transcriptional boost of sarcomeric components, myofibrils assemble into chains of periodic sarcomeres that emerge across the entire myofiber. More efficient myofiber bundling accelerates the speed of sarcomerogenesis suggesting that tension generated by bundling promotes sarcomerogenesis. We tested this hypothesis by directly probing tension and found that tension build-up precedes sarcomere assembly and increases within each assembling myofibril. Furthermore, we found that myofiber ends stably attach to other myofibers using integrin-based attachments and thus myofiber bundling coincides with stable myofiber bundle attachment in vitro. A failure in stable myofiber attachment results in a collapse of the myofibrils. Overall, our results strongly suggest that mechanical tension across sarcomeric components as well as between differentiating myofibers is key to coordinate the multi-scale self-organisation of muscle morphogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Miofibrilas/fisiologia , Sarcômeros
4.
J Vis Exp ; (141)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30451227

RESUMO

Morphogenesis requires coordination between genetic patterning and mechanical forces to robustly shape the cells and tissues. Hence, a challenge to understand morphogenetic processes is to directly measure cellular forces and mechanical properties in vivo during embryogenesis. Here, we present a setup of optical tweezers coupled to a light sheet microscope, which allows to directly apply forces on cell-cell contacts of the early Drosophila embryo, while imaging at a speed of several frames per second. This technique has the advantage that it does not require the injection of beads into the embryo, usually used as intermediate probes on which optical forces are exerted. We detail step by step the implementation of the setup, and propose tools to extract mechanical information from the experiments. By monitoring the displacements of cell-cell contacts in real time, one can perform tension measurements and investigate cell contacts' rheology.


Assuntos
Drosophila/embriologia , Desenvolvimento Embrionário/fisiologia , Pinças Ópticas/uso terapêutico , Animais
5.
Sci Rep ; 5: 11379, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26198871

RESUMO

Calcium ion acts in nearly every aspect of cellular life. The versatility and specificity required for such a ubiquitous role is ensured by the spatio-temporal dynamics of calcium concentration variations. While calcium signal dynamics has been extensively studied in cell cultures and adult tissues, little is known about calcium activity during early tissue morphogenesis. We monitored intracellular calcium concentration in Drosophila gastrula and revealed single cell calcium spikes that were short-lived, rare and showed strong variability among embryos. We quantitatively described the spatio-temporal dynamics of these spikes and analyzed their potential origins and nature by introducing physical and chemical perturbations. Our data highlight the inter- and intra-tissue variability of calcium activity during tissue morphogenesis.


Assuntos
Cálcio/metabolismo , Drosophila/embriologia , Potenciais de Ação , Animais , Epitélio/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(5): 1416-21, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605934

RESUMO

Cell-generated forces produce a variety of tissue movements and tissue shape changes. The cytoskeletal elements that underlie these dynamics act at cell-cell and cell-ECM contacts to apply local forces on adhesive structures. In epithelia, force imbalance at cell contacts induces cell shape changes, such as apical constriction or polarized junction remodeling, driving tissue morphogenesis. The dynamics of these processes are well-characterized; however, the mechanical basis of cell shape changes is largely unknown because of a lack of mechanical measurements in vivo. We have developed an approach combining optical tweezers with light-sheet microscopy to probe the mechanical properties of epithelial cell junctions in the early Drosophila embryo. We show that optical trapping can efficiently deform cell-cell interfaces and measure tension at cell junctions, which is on the order of 100 pN. We show that tension at cell junctions equilibrates over a few seconds, a short timescale compared with the contractile events that drive morphogenetic movements. We also show that tension increases along cell interfaces during early tissue morphogenesis and becomes anisotropic as cells intercalate during germ-band extension. By performing pull-and-release experiments, we identify time-dependent properties of junctional mechanics consistent with a simple viscoelastic model. Integrating this constitutive law into a tissue-scale model, we predict quantitatively how local deformations propagate throughout the tissue.


Assuntos
Comunicação Celular , Lasers , Animais , Drosophila/embriologia , Pinças Ópticas
7.
J Vis Exp ; (87)2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24836407

RESUMO

Fast and low phototoxic imaging techniques are pre-requisite to study the development of organisms in toto. Light sheet based microscopy reduces photo-bleaching and phototoxic effects compared to confocal microscopy, while providing 3D images with subcellular resolution. Here we present the setup of a light sheet based microscope, which is composed of an upright microscope and a small set of opto-mechanical elements for the generation of the light sheet. The protocol describes how to build, align the microscope and characterize the light sheet. In addition, it details how to implement the method for in toto imaging of C. elegans embryos using a simple observation chamber. The method allows the capture of 3D two-colors time-lapse movies over few hours of development. This should ease the tracking of cell shape, cell divisions and tagged proteins over long periods of time.


Assuntos
Caenorhabditis elegans/embriologia , Microscopia/instrumentação , Microscopia/métodos , Animais , Embrião não Mamífero , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Imagem com Lapso de Tempo/instrumentação , Imagem com Lapso de Tempo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA