Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065348

RESUMO

Signaling, proliferation, and inflammation are dependent on K63-linked ubiquitination-conjugation of a chain of ubiquitin molecules linked via lysine 63. However, very little information is currently available about how K63-linked ubiquitination is subverted in cancer. The present study provides, for the first time, evidence that cadmium (Cd), a widespread environmental carcinogen, is a potent activator of K63-linked ubiquitination, independently of oxidative damage, activation of ubiquitin ligase, or proteasome impairment. We show that Cd induces the formation of protein aggregates that sequester and inactivate cylindromatosis (CYLD) and selective autophagy, two tumor suppressors that deubiquitinate and degrade K63-ubiquitinated proteins, respectively. The aggregates are constituted of substrates of selective autophagy-SQSTM1, K63-ubiquitinated proteins, and mitochondria. These protein aggregates also cluster double-membrane remnants, which suggests an impairment in autophagosome maturation. However, failure to eliminate these selective cargos is not due to alterations in the general autophagy process, as degradation of long-lived proteins occurs normally. We propose that the simultaneous disruption of CYLD and selective autophagy by Cd feeds a vicious cycle that further amplifies K63-linked ubiquitination and downstream activation of the NF-κB pathway, processes that support cancer progression. These novel findings link together impairment of selective autophagy, K63-linked ubiquitination, and carcinogenesis.

2.
APMIS ; 122(11): 1047-58, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24735202

RESUMO

Neutrophils constitute the first line of cellular defense against pathogens and autophagy is a fundamental cellular homeostasis pathway that operates with the intracellular degradation/recycling system. Induction of the autophagic process in neutrophils, in response to invading pathogens, constitutes a crucial mechanism in innate immunity. Exploration of autophagy has greatly progressed and diverse strategies have been reported for studying this molecular process in different biological systems; especially in infectious and inflammatory diseases. Furthermore, the role of autophagy in neutrophils, during pathogenic infection, continues to be of interest, due to the role of the cell in immunity function, its recruitment to the site of infection and its implication in inflammatory diseases. This review focuses on the known role of autophagy in neutrophils defence against pathogenic infections. A more detailed discussion will concern the recent findings highlighting the role of autophagy in inflammation and cell death in infected neutrophils.


Assuntos
Autofagia/imunologia , Infecções Bacterianas/imunologia , Neutrófilos/imunologia , Animais , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia
3.
Cancer Res ; 73(14): 4311-22, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23704209

RESUMO

Degradation of signaling proteins is one of the most powerful tumor-suppressive mechanisms by which a cell can control its own growth. Here, we identify RHOA as the molecular target by which autophagy maintains genomic stability. Specifically, inhibition of autophagosome degradation by the loss of the v-ATPase a3 (TCIRG1) subunit is sufficient to induce aneuploidy. Underlying this phenotype, active RHOA is sequestered via p62 (SQSTM1) within autolysosomes and fails to localize to the plasma membrane or to the spindle midbody. Conversely, inhibition of autophagosome formation by ATG5 shRNA dramatically increases localization of active RHOA at the midbody, followed by diffusion to the flanking zones. As a result, all of the approaches we examined that compromise autophagy (irrespective of the defect: autophagosome formation, sequestration, or degradation) drive cytokinesis failure, multinucleation, and aneuploidy, processes that directly have an impact upon cancer progression. Consistently, we report a positive correlation between autophagy defects and the higher expression of RHOA in human lung carcinoma. We therefore propose that autophagy may act, in part, as a safeguard mechanism that degrades and thereby maintains the appropriate level of active RHOA at the midbody for faithful completion of cytokinesis and genome inheritance.


Assuntos
Autofagia/fisiologia , Citocinese/fisiologia , Instabilidade Genômica , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Autofagia/genética , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Citocinese/genética , Células Gigantes/metabolismo , Células Gigantes/fisiologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/fisiologia , Camundongos , Fagossomos/genética , Fagossomos/metabolismo , Fagossomos/fisiologia , Proteólise , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteína rhoA de Ligação ao GTP/genética
4.
PLoS One ; 7(12): e51727, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23272151

RESUMO

Invading bacteria are recognized, captured and killed by a specialized form of autophagy, called xenophagy. Recently, defects in xenophagy in Crohn's disease (CD) have been implicated in the pathogenesis of human chronic inflammatory diseases of uncertain etiology of the gastrointestinal tract. We show here that pathogenic adherent-invasive Escherichia coli (AIEC) isolated from CD patients are able to adhere and invade neutrophils, which represent the first line of defense against bacteria. Of particular interest, AIEC infection of neutrophil-like PLB-985 cells blocked autophagy at the autolysosomal step, which allowed intracellular survival of bacteria and exacerbated interleukin-8 (IL-8) production. Interestingly, this block in autophagy correlated with the induction of autophagic cell death. Likewise, stimulation of autophagy by nutrient starvation or rapamycin treatment reduced intracellular AIEC survival and IL-8 production. Finally, treatment with an inhibitor of autophagy decreased cell death of AIEC-infected neutrophil-like PLB-985 cells. In conclusion, excessive autophagy in AIEC infection triggered cell death of neutrophils.


Assuntos
Autofagia/imunologia , Escherichia coli/imunologia , Inflamação/imunologia , Inflamação/microbiologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Aderência Bacteriana/imunologia , Morte Celular/imunologia , Linhagem Celular , Escherichia coli/metabolismo , Humanos , Neutrófilos/patologia , Transdução de Sinais
5.
Am J Pathol ; 181(4): 1367-77, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22846720

RESUMO

Adaptation to hypoxia is an essential physiological response to decrease in tissue oxygenation. This process is primarily under the control of transcriptional activator hypoxia-inducible factor (HIF1). A better understanding of the intracellular HIF1 stabilization pathway would help in management of various diseases characterized by anemia. Among human pathologies, cystic fibrosis disease is characterized by a chronic anemia that is inadequately compensated by the classical erythroid response mediated by the HIF pathway. Because the kidney expresses CFTR and is a master organ involved in the adaptation to hypoxia, we used renal cells to explore the relationship between CFTR and the HIF1-mediated pathway. To monitor the adaptive response to hypoxia, we engineered a hypoxia-induced fluorescent reporter system to determine whether CFTR modulates hypoxia-induced HIF1 stabilization. We show that CFTR is a regulator of HIF stabilization by controlling the intracellular reactive oxygen species (ROS) level through its ability to transport glutathione (a ROS scavenger) out of the cell. Moreover, we demonstrated in a mouse model that both the pharmacological inhibition and the ΔF508 mutation of CFTR lead to an impairment of the adaptive erythroid response to oxygen deprivation. We conclude that CFTR controls HIF stabilization through control of the level of intracellular ROS that act as signaling agents in the HIF-1 pathway.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Espaço Intracelular/metabolismo , Acetilcisteína/farmacologia , Animais , Anidrases Carbônicas/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Canais de Cloreto/metabolismo , Fibrose Cística/urina , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Modelos Animais de Doenças , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Espaço Intracelular/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mutação/genética , Concentração Osmolar , Oxirredução/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Espécies Reativas de Oxigênio/metabolismo
6.
Toxicol Sci ; 121(1): 31-42, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21325019

RESUMO

Environmental exposures to cadmium (Cd) are a major cause of human toxicity. The kidney is the most sensitive organ; however, the natures of injuries and of adaptive responses have not been adequately investigated, particularly in response to environmental relevant Cd concentrations. In this study, rats received a daily ip injection of low CdCl2 dose (0.3 mg Cd/kg body mass) and killed at 1, 3, and 5 days of intoxication. Functional, ultrastructural, and biochemical observations were used to evaluate Cd effects. We show that Cd at such subtoxic doses does not affect the tubular functions nor does it induce apoptosis. Meanwhile, Cd accumulates within lysosomes of proximal convoluted tubule (PCT) cells where it triggers cell proliferation and autophagy. By developing an immunohistochemical assay, a punctate staining of light chain 3-II is prominent in Cd-intoxicated kidneys, as compared with control. We provide the evidence of a direct upregulation of autophagy by Cd using a PCT cell line. Compared with the other heavy metals, Cd is the most powerful inducer of endoplasmic reticulum stress and autophagy in PCT cells, in relation to the hypersensitivity of PCT cells. Altogether, these findings suggest that kidney cortex adapts to subtoxic Cd dose by activating autophagy, a housekeeping process that ensures the degradation of damaged proteins. Given that Cd is persistent within cytosol, it might damage proteins continuously and impair at long-term autophagy efficiency. We therefore propose the autophagy pathway as a new sensitive biomarker for renal injury even after exposure to subtoxic Cd doses.


Assuntos
Autofagia/efeitos dos fármacos , Biomarcadores/metabolismo , Cádmio/toxicidade , Rim/efeitos dos fármacos , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Imuno-Histoquímica , Rim/imunologia , Rim/metabolismo , Ratos , Ratos Wistar
7.
J Mol Histol ; 41(4-5): 233-45, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20700633

RESUMO

The impact of garlic, known for its antioxidant activities, on iron metabolism has been poorly investigated. The aim of this work was to study the effect of crude garlic pre-treatment on iron-mediated lipid peroxidation, proliferation and autophagy for 5 weeks. Rats were fed distilled water or garlic solution (1 g/kg body weight) by gavage for the first 3 weeks as pre-treatment and received a basal diet supplemented or not with ferrous sulfate (650 mg Fe/kg diet) for the last 2 weeks of treatment. Immunohistochemistry labeling and ultrastuctural observations were used to evaluate the iron deleterious effects in the liver. Iron supplementation induced cell proliferation predominantly in non parenchymal cells comparing to hepatocytes, but not apoptosis. In addition, iron was accumulated within the hepatic lysosomes where it triggers autophagy as evidenced by the formation of autophagic vesicles detected by LC3-II staining. It also induced morphologic alterations of the mitochondrial membranes due to increased lipid peroxidation as shown by elevated iron and malondialdehyde concentrations in serum and tissues. Garlic pre-treatment reduced iron-catalyzed lipid peroxidation by decreasing the malondialdehyde level in the liver and colon and by enhancing the status of antioxidants. In addition, garlic reduced the iron-mediated cell proliferation and autophagy by lowering iron storage in the liver and protected mitochondrial membrane. Based on these results, garlic treatment significantly prevented iron-induced oxidative stress, proliferation and autophagy at both biochemical and histological levels due to its potent free radical scavenging and antioxidant properties.


Assuntos
Autofagia/efeitos dos fármacos , Misturas Complexas/farmacologia , Alho/química , Ferro/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Suplementos Nutricionais , Comportamento Alimentar/efeitos dos fármacos , Ferro/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Fígado/ultraestrutura , Masculino , Malondialdeído/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA