Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Mol Pharm ; 18(3): 1167-1175, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33450157

RESUMO

Predicting the solution viscosity of monoclonal antibody (mAb) drug products remains as one of the main challenges in antibody drug design, manufacturing, and delivery. In this work, the concentration-dependent solution viscosity of 27 FDA-approved mAbs was measured at pH 6.0 in 10 mM histidine-HCl. Six mAbs exhibited high viscosity (>30 cP) in solutions at 150 mg/mL mAb concentration. Combining molecular modeling and machine learning feature selection, we found that the net charge in the mAbs and the amino acid composition in the Fv region are key features which govern the viscosity behavior. For mAbs whose behavior was not dominated by charge effects, we observed that high viscosity is correlated with more hydrophilic and fewer hydrophobic residues in the Fv region. A predictive model based on the net charges of mAbs and a high viscosity index is presented as a fast screening tool for classifying low- and high-viscosity mAbs.


Assuntos
Anticorpos Monoclonais/química , Aminoácidos/sangue , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Aprendizado de Máquina , Modelos Moleculares , Eletricidade Estática , Viscosidade
2.
Mol Cancer Ther ; 20(1): 203-212, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33177153

RESUMO

Several antibody-drug conjugates (ADC) showing strong clinical responses in solid tumors target high expression antigens (HER2, TROP2, Nectin-4, and folate receptor alpha/FRα). Highly expressed tumor antigens often have significant low-level expression in normal tissues, resulting in the potential for target-mediated drug disposition (TMDD) and increased clearance. However, ADCs often do not cross-react with normal tissue in animal models used to test efficacy (typically mice), and the impact of ADC binding to normal tissue antigens on tumor response remains unclear. An antibody that cross-reacts with human and murine FRα was generated and tested in an animal model where the antibody/ADC bind both human tumor FRα and mouse FRα in normal tissue. Previous work has demonstrated that a "carrier" dose of unconjugated antibody can improve the tumor penetration of ADCs with high expression target-antigens. A carrier dose was employed to study the impact on cross-reactive ADC clearance, distribution, and efficacy. Co-administration of unconjugated anti-FRα antibody with the ADC-improved efficacy, even in low expression models where co-administration normally lowers efficacy. By reducing target-antigen-mediated clearance in normal tissue, the co-administered antibody increased systemic exposure, improved tumor tissue penetration, reduced target-antigen-mediated uptake in normal tissue, and increased ADC efficacy. However, payload potency and tumor antigen saturation are also critical to efficacy, as shown with reduced efficacy using too high of a carrier dose. The judicious use of higher antibody doses, either through lower DAR or carrier doses, can improve the therapeutic window by increasing efficacy while lowering target-mediated toxicity in normal tissue.


Assuntos
Anticorpos/administração & dosagem , Anticorpos/farmacologia , Imunoconjugados/metabolismo , Animais , Anticorpos/toxicidade , Linhagem Celular Tumoral , Reações Cruzadas/imunologia , Portadores de Fármacos/química , Feminino , Imunoconjugados/sangue , Camundongos , Camundongos SCID , Neoplasias/patologia , Resultado do Tratamento
3.
Mol Pharm ; 17(1): 50-58, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31742408

RESUMO

DNA-targeting indolinobenzodiazepine dimer (IGN) payloads are used in several clinical-stage antibody-drug conjugates. IGN drugs alkylate DNA through the single imine moiety present in the dimer in contrast to the pyrrolobenzodiazepine dimer drugs, such as talirine and tesirine, which contain two imine moieties per dimer and cross-link DNA. This study explored the mechanism of binding of IGN to DNA in cells and to synthetic duplex and hairpin oligonucleotides. New, highly sensitive IGN-DNA binding enzyme-linked immunosorbent assay methods were developed using biotinylated IGN analogues (monoimine, diimine, and diamine IGNs) and digoxigenin-labeled duplex oligonucleotides, which allowed the measurement of drug-DNA adducts in viable cells at concentrations below IC50. Furthermore, the release of free drug from the IGN-DNA adduct upon treatment with nuclease ex vivo was tested under physiological conditions. The monoimine IGN drug formed a highly stable adduct with DNA in cells, with stability similar to that of the diimine drug analogue. Both monoimine and diimine IGN-DNA adducts released free drugs upon DNA cleavage by nuclease at 37 °C, although more free drug was released from the monoimine compared to the diimine adduct, which presumably was partly cross-linked. The strong binding of the monoimine IGN drug to duplex DNA results from both the noncovalent IGN-DNA interaction and the covalent bond formation between the 2-amino group of a guanine residue and the imine moiety in IGN.


Assuntos
Antineoplásicos/química , Benzodiazepinas/química , Adutos de DNA/química , DNA/química , Imunoconjugados/farmacologia , Indóis/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Adutos de DNA/metabolismo , Dimerização , ELISPOT , Humanos , Iminas/química , Imunoconjugados/administração & dosagem , Oligonucleotídeos/química , Pirróis/química
4.
Bioconjug Chem ; 31(1): 93-103, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31747250

RESUMO

Antibody-drug conjugates have elicited great interest recently as targeted chemotherapies for cancer. Recent preclinical and clinical data have continued to raise questions about optimizing the design of these complex therapeutics. Biochemical methods for site-specific antibody conjugation have been a design feature of recent clinical ADCs, and preclinical reports suggest that site-specifically conjugated ADCs generically offer improved therapeutic indices (i.e., the fold difference between efficacious and maximum tolerated doses). Here we present the results of a systematic preclinical comparison of ADCs embodying the DNA-alkylating linker-payload DGN549 generated with both heterogeneous lysine-directed and site-specific cysteine-directed conjugation chemistries. Importantly, the catabolites generated by each ADC are the same regardless of the conjugation format. In two different model systems evaluated, the site-specific ADC showed a therapeutic index benefit. However, the therapeutic index benefit is different in each case: both show evidence of improved tolerability, though with different magnitudes, and in one case significant efficacy improvement is also observed. These results support our contention that conjugation chemistry of ADCs is best evaluated in the context of a particular antibody, target, and linker-payload, and ideally across multiple disease models.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Benzodiazepinas/uso terapêutico , Imunoconjugados/uso terapêutico , Lisina/uso terapêutico , Neoplasias/tratamento farmacológico , Oxindóis/uso terapêutico , Animais , Antineoplásicos Alquilantes/efeitos adversos , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/farmacocinética , Antineoplásicos Alquilantes/uso terapêutico , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacocinética , Benzodiazepinas/efeitos adversos , Benzodiazepinas/química , Benzodiazepinas/farmacocinética , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Lisina/efeitos adversos , Lisina/química , Lisina/farmacocinética , Camundongos , Camundongos SCID , Oxindóis/efeitos adversos , Oxindóis/química , Oxindóis/farmacocinética , Índice Terapêutico
5.
ACS Med Chem Lett ; 10(10): 1386-1392, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31620223

RESUMO

Antibody-drug conjugates (ADCs) that incorporate the exatecan derivative DXd in their payload are showing promising clinical results in solid tumor indications. The payload has an F-ring that also contains a second chiral center, both of which complicate its synthesis and derivatization. Here we report on new camptothecin-ADCs that do not have an F-ring in their payloads yet behave similarly to DXd-bearing conjugates in vitro and in vivo. This simplification allows easier derivatization of camptothecin A and B rings for structure-activity relationship studies and payload optimization. ADCs having different degrees of bystander killing and the ability to release hydroxyl or thiol-bearing metabolites following peptide linker cleavage were investigated.

6.
ACS Med Chem Lett ; 10(10): 1393-1399, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31620224

RESUMO

A new type of antibody-drug conjugate (ADC) has been prepared that contains a sulfur-bearing maytansinoid attached to an antibody via a highly stable tripeptide linker. Once internalized by cells, proteases in catabolic vesicles cleave the peptide of the ADC's linker causing self-immolation that releases a thiol-bearing metabolite, which is then S-methylated. Conjugates were prepared with peptide linkers containing only alanyl residues, which were all l isomers or had a single d residue in one of the three positions. A d-alanyl residue in the linker did not significantly impair a conjugate's cytotoxicity or bystander killing unless it was directly attached to the immolative moiety. Increasing the number of methylene units in the maytansinoid side chain of a conjugate did not typically affect an ADC's cytotoxicity to targeted cells but did increase bystander killing activity. ADCs with the highest in vitro bystander killing were then evaluated in vivo in mice, where they displayed improved efficacy compared to previously described types of maytansinoid conjugates.

7.
Mol Pharm ; 16(12): 4817-4825, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31609629

RESUMO

Although peptide linkers are used in multiple clinical-stage ADCs, there are only few reports on optimizing peptide linkers for efficient lysosomal proteolysis and for stability in circulation. We screened multiple dipeptide linkers for efficiency of proteolysis and compared them to the dipeptide linkers currently being evaluated in the clinic: Val-Cit, Val-Ala, and Ala-Ala. Lead dipeptide linkers selected from the initial screen were incorporated into ADCs with indolinobenzodiazepine dimer (IGN) payloads to evaluate cellular processing, in vitro cytotoxic activity, plasma stability, and in vivo efficacy. ADCs with several dipeptide linkers bearing l-amino acids showed faster lysosomal processing in target cancer cells compared to the l-Ala-l-Ala linked ADC. These variances in linker processing rates did not result in different in vitro and in vivo activities among peptide linker ADCs, presumably due to accumulation of threshold cytotoxic catabolite levels for ADCs of several peptide linkers in the cell lines and xenografts tested. ADCs with l-amino acid dipeptide linkers exhibited superior in vitro cytotoxic potencies in multiple cell lines compared to an ADC with a d-Ala-d-Ala dipeptide linker and an ADC with a noncleavable linker. This work adds to the toolbox of stable, lysosomally cleavable peptide linkers for ADCs.


Assuntos
Anticorpos/química , Biopolímeros/química , Dipeptídeos/química , Imunoconjugados/química , Lisossomos/metabolismo , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Camundongos SCID , Estrutura Molecular , Ensaios Antitumorais Modelo de Xenoenxerto
8.
ACS Med Chem Lett ; 10(8): 1193-1197, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31413805

RESUMO

Antibody-drug conjugates (ADCs) that incorporate potent indolinobenzodiazepine DNA alkylators as the payload component are currently undergoing clinical evaluation. In one ADC design, the payload molecules are linked to the antibody through a peptidase-labile l-Ala-l-Ala linker. In order to determine the role of amino acid stereochemistry on antitumor activity and tolerability, we incorporated l- and d-alanyl groups in the dipeptide, synthesized all four diastereomers, and prepared and tested the corresponding ADCs. Results of our preclinical evaluation showed that the l-Ala-l-Ala configuration provided the ADC with the highest therapeutic index (antitumor activity vs toxicity).

9.
ACS Med Chem Lett ; 10(8): 1211-1215, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31413807

RESUMO

Indolinobenzodiazepine DNA alkylators (IGNs) are the cytotoxic payloads in antibody-drug conjugates (ADCs) currently undergoing Phase I clinical evaluation (IMGN779, IMGN632, and TAK164). These ADCs possess linkers that have been incorporated into a central substituted phenyl spacer. Here, we present an alternative strategy for the IGNs, linking through a carbamate at the readily available N-10 amine present in the monoimine containing dimer. As a result, we have designed a series of N-10 linked IGN ADCs with a wide range of in vitro potency and tolerability, which may allow us to better match an IGN with a particular target based on the potential dosing needs.

10.
Bioorg Med Chem Lett ; 29(17): 2455-2458, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31350125

RESUMO

Antibody-drug conjugates (ADCs) incorporating potent indolinobenzodiazepine (IGN) DNA alkylators as the cytotoxic payload are currently undergoing clinical evaluation. The optimized design of these payloads consists of an unsymmetrical dimer possessing both an imine and an amine effectively eliminating DNA crosslinking and demonstrating improved tolerability in mice. Here we present an alternate approach to generating DNA alkylating ADCs by linking the IGN monomer with a biaryl system which has a high DNA binding affinity to potentially enhance tolerability. These BIA ADCs were found to be highly cytotoxic in vitro and demonstrated potent antitumor activity in vivo.


Assuntos
Alquilantes/química , Desenho de Fármacos , Imunoconjugados/química , Animais , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Camundongos , Camundongos SCID , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Relação Estrutura-Atividade , Transplante Heterólogo
11.
J Trauma Acute Care Surg ; 87(3): 559-565, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31205210

RESUMO

BACKGROUND: We hypothesize that if both energy expenditure and oxygenation are optimized (EEOO) toward ventilator tolerance, this would provide patients with the best condition to be liberated from the ventilator. We defined ventilator tolerance as having a respiratory quotient value between 0.7 and 1.0 while maintaining saturations above 98% with FIO2 70% or less and a normal respiratory rate without causing disturbances to the patient's pH. METHODS: This is a single-institution prospective cohort study of ventilator dependent patients within a closed trauma intensive care unit (ICU). The study period was over 52 months. A total of 1,090 patients were part of the primary analysis. The test group (EEOO) was compared to a historical cohort, comparing 26 months in each study group. The primary outcome of this study was number of ventilator days. Secondary outcomes included in-hospital mortality, ICU length of stay (LOS), overall hospital length of stay, tracheostomy rates, reintubation rates, and in-hospital complication rates, such as pneumonia and Acute Respiratory Distress Syndrome (ARDS) ARDS. Both descriptive and multivariable regression analyses were performed to compare the effects of the EEOO protocol with our standard protocols alone. RESULTS: The primary outcome of number of ventilator days was significantly shorter the EEOO cohort by nearly 3 days. This was significant even after adjustment for age, sex, race, comorbidities, nutrition type, and injury severity, (4.3 days vs. 7.2 days, p = 0.0001). The EEOO cohort also had significantly lower ICU days, hospital days, and overall complications rates. CONCLUSION: Optimizing the patient's nutritional regimen to ventilator tolerance and optimizing oxygenation by means of targeted pulmonary mechanics and inspired FIO2 may be associated with lower ventilator and ICU days, as well as overall complication rates. LEVEL OF EVIDENCE: Therapeutic, Level IV.


Assuntos
Metabolismo Energético , Unidades de Terapia Intensiva/estatística & dados numéricos , Tempo de Internação/estatística & dados numéricos , Respiração Artificial/métodos , Desmame do Respirador/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/administração & dosagem , Estudos Prospectivos , Respiração Artificial/estatística & dados numéricos , Traqueostomia/estatística & dados numéricos , Ferimentos e Lesões/complicações , Ferimentos e Lesões/terapia , Adulto Jovem
12.
Blood Adv ; 2(8): 848-858, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29661755

RESUMO

The outlook for patients with refractory/relapsed acute myeloid leukemia (AML) remains poor, with conventional chemotherapeutic treatments often associated with unacceptable toxicities, including severe infections due to profound myelosuppression. Thus there exists an urgent need for more effective agents to treat AML that confer high therapeutic indices and favorable tolerability profiles. Because of its high expression on leukemic blast and stem cells compared with normal hematopoietic stem cells and progenitors, CD123 has emerged as a rational candidate for molecularly targeted therapeutic approaches in this disease. Here we describe the development and preclinical characterization of a CD123-targeting antibody-drug conjugate (ADC), IMGN632, that comprises a novel humanized anti-CD123 antibody G4723A linked to a recently reported DNA mono-alkylating payload of the indolinobenzodiazepine pseudodimer (IGN) class of cytotoxic compounds. The activity of IMGN632 was compared with X-ADC, the ADC utilizing the G4723A antibody linked to a DNA crosslinking IGN payload. With low picomolar potency, both ADCs reduced viability in AML cell lines and patient-derived samples in culture, irrespective of their multidrug resistance or disease status. However, X-ADC exposure was >40-fold more cytotoxic to the normal myeloid progenitors than IMGN632. Of particular note, IMGN632 demonstrated potent activity in all AML samples at concentrations well below levels that impacted normal bone marrow progenitors, suggesting the potential for efficacy in AML patients in the absence of or with limited myelosuppression. Furthermore, IMGN632 demonstrated robust antitumor efficacy in multiple AML xenograft models. Overall, these findings identify IMGN632 as a promising candidate for evaluation as a novel therapy in AML.


Assuntos
Imunoconjugados/uso terapêutico , Subunidade alfa de Receptor de Interleucina-3/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Xenoenxertos , Humanos , Imunoconjugados/imunologia , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células Tumorais Cultivadas
13.
Mol Cancer Ther ; 17(3): 650-660, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29440292

RESUMO

Tumor-selective delivery of cytotoxic agents in the form of antibody-drug conjugates (ADCs) is now a clinically validated approach for cancer treatment. In an attempt to improve the clinical success rate of ADCs, emphasis has been recently placed on the use of DNA-cross-linking pyrrolobenzodiazepine compounds as the payload. Despite promising early clinical results with this class of ADCs, doses achievable have been low due to systemic toxicity. Here, we describe the development of a new class of potent DNA-interacting agents wherein changing the mechanism of action from a cross-linker to a DNA alkylator improves the tolerability of the ADC. ADCs containing the DNA alkylator displayed similar in vitro potency, but improved bystander killing and in vivo efficacy, compared with those of the cross-linker. Thus, the improved in vivo tolerability and antitumor activity achieved in rodent models with ADCs of the novel DNA alkylator could provide an efficacious, yet safer option for cancer treatment. Mol Cancer Ther; 17(3); 650-60. ©2018 AACR.


Assuntos
Imunoconjugados/farmacologia , Substâncias Intercalantes/farmacologia , Neoplasias/tratamento farmacológico , Índice Terapêutico do Medicamento , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/metabolismo , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , DNA/genética , DNA/metabolismo , Desenho de Fármacos , Humanos , Imunoconjugados/química , Imunoconjugados/metabolismo , Substâncias Intercalantes/química , Substâncias Intercalantes/metabolismo , Camundongos , Neoplasias/patologia , Carga Tumoral/efeitos dos fármacos
14.
Bioconjug Chem ; 28(5): 1371-1381, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28388844

RESUMO

Antibody-drug conjugates (ADCs) are being actively pursued as a treatment option for cancer following the regulatory approval of brentuximab vedotin (Adcetris) and ado-trastuzumab emtansine (Kadcyla). ADCs consist of a cytotoxic agent conjugated to a targeting antibody through a linker. The two approved ADCs (and most ADCs now in the clinic that use a microtubule disrupting agent as the payload) are heterogeneous conjugates with an average drug-to-antibody ratio (DAR) of 3-4 (potentially ranging from 0 to 8 for individual species). Ado-trastuzumab emtansine employs DM1, a semisynthetic cytotoxic payload of the maytansinoid class, which is conjugated via lysine residues of the antibody to an average DAR of 3.5. To understand the effect of DAR on the preclinical properties of ADCs using maytansinoid cytotoxic agents, we prepared a series of conjugates with a cleavable linker (M9346A-sulfo-SPDB-DM4 targeting folate receptor α (FRα)) or an uncleavable linker (J2898A-SMCC-DM1 targeting the epidermal growth factor receptor (EGFR)) with varying DAR and evaluated their biochemical characteristics, in vivo stability, efficacy, and tolerability. For both formats, a series of ADCs with DARs ranging from low (average of ∼2 and range of 0-4) to very high (average of 10 and range of 7-14) were prepared in good yield with high monomer content and low levels of free cytotoxic agent. The in vitro potency consistently increased with increasing DAR at a constant antibody concentration. We then characterized the in vivo disposition of these ADCs. Pharmacokinetic analysis showed that conjugates with an average DAR below ∼6 had comparable clearance rates, but for those with an average DAR of ∼9-10, rapid clearance was observed. Biodistribution studies in mice showed that these 9-10 DAR ADCs rapidly accumulate in the liver, with maximum localization for this organ at 24-28% percentage injected dose per gram (%ID/g) compared with 7-10% for lower-DAR conjugates (all at 2-6 h post-injection). Our preclinical findings on tolerability and efficacy suggest that maytansinoid conjugates with DAR ranging from 2 to 6 have a better therapeutic index than conjugates with very high DAR (∼9-10). These very high DAR ADCs suffer from decreased efficacy, likely due to faster clearance. These results support the use of DAR 3-4 for maytansinoid ADCs but suggest that the exploration of lower or higher DAR may be warranted depending on the biology of the target antigen.


Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos Fitogênicos/farmacocinética , Imunoconjugados/farmacocinética , Maitansina/farmacocinética , Animais , Antineoplásicos Fitogênicos/farmacologia , Feminino , Humanos , Imunoconjugados/farmacologia , Células KB , Maitansina/farmacologia , Camundongos , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
ACS Med Chem Lett ; 7(11): 974-976, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27882193

RESUMO

Antibody-drug conjugates (ADCs) represent an emerging new paradigm in cancer therapy. The approval of two ADCs has spurred considerable interest in this area of research, and over 55 ADCs are currently in clinical testing. In order to improve the clinical success rate of ADC therapy, all three components of the ADC: the antibody, linker, and payload have to be optimized. While considerable improvements have been made in antibody properties and target selection, medicinal chemistry efforts have lagged behind, and there is a significant need for innovation in linker design and payloads.

16.
Mol Cancer Ther ; 15(8): 1870-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27216304

RESUMO

The promise of tumor-selective delivery of cytotoxic agents in the form of antibody-drug conjugates (ADC) has now been realized, evidenced by the approval of two ADCs, both of which incorporate highly cytotoxic tubulin-interacting agents, for cancer therapy. An ongoing challenge remains in identifying potent agents with alternative mechanisms of cell killing that can provide ADCs with high therapeutic indices and favorable tolerability. Here, we describe the development of a new class of potent DNA alkylating agents that meets these objectives. Through chemical design, we changed the mechanism of action of our novel DNA cross-linking agent to a monofunctional DNA alkylator. This modification, coupled with linker optimization, generated ADCs that were well tolerated in mice and demonstrated robust antitumor activity in multiple tumor models at doses 1.5% to 3.5% of maximally tolerated levels. These properties underscore the considerable potential of these purpose-created, unique DNA-interacting conjugates for broadening the clinical application of ADC technology. Mol Cancer Ther; 15(8); 1870-8. ©2016 AACR.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Imunoconjugados/farmacologia , Animais , Antineoplásicos Alquilantes/química , Efeito Espectador , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/química , DNA/metabolismo , Adutos de DNA , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Imunoconjugados/química , Camundongos , Estrutura Molecular , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Bioconjug Chem ; 27(7): 1588-98, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27174129

RESUMO

Antibody-drug conjugates (ADCs) have become a widely investigated modality for cancer therapy, in part due to the clinical findings with ado-trastuzumab emtansine (Kadcyla). Ado-trastuzumab emtansine utilizes the Ab-SMCC-DM1 format, in which the thiol-functionalized maytansinoid cytotoxic agent, DM1, is linked to the antibody (Ab) via the maleimide moiety of the heterobifunctional SMCC linker. The pharmacokinetic (PK) data for ado-trastuzumab emtansine point to a faster clearance for the ADC than for total antibody. Cytotoxic agent release in plasma has been reported with nonmaytansinoid, cysteine-linked ADCs via thiol-maleimide exchange, for example, brentuximab vedotin. For Ab-SMCC-DM1 ADCs, however, the main catabolite reported is lysine-SMCC-DM1, the expected product of intracellular antibody proteolysis. To understand these observations better, we conducted a series of studies to examine the stability of the thiol-maleimide linkage, utilizing the EGFR-targeting conjugate, J2898A-SMCC-DM1, and comparing it with a control ADC made with a noncleavable linker that lacked a thiol-maleimide adduct (J2898A-(CH2)3-DM). We employed radiolabeled ADCs to directly measure both the antibody and the ADC components in plasma. The PK properties of the conjugated antibody moiety of the two conjugates, J2898A-SMCC-DM1 and J2898A-(CH2)3-DM (each with an average of 3.0 to 3.4 maytansinoid molecules per antibody), appear to be similar to that of the unconjugated antibody. Clearance values of the intact conjugates were slightly faster than those of the Ab components. Furthermore, J2898A-SMCC-DM1 clears slightly faster than J2898A-(CH2)3-DM, suggesting that there is a fraction of maytansinoid loss from the SMCC-DM1 ADC, possibly through a thiol-maleimide dependent mechanism. Experiments on ex vivo stability confirm that some loss of maytansinoid from Ab-SMCC-DM1 conjugates can occur via thiol elimination, but at a slower rate than the corresponding rate of loss reported for thiol-maleimide links formed at thiols derived by reduction of endogenous cysteine residues in antibodies, consistent with expected differences in thiol-maleimide stability related to thiol pKa. These findings inform the design strategy for future ADCs.


Assuntos
Imunoconjugados/química , Imunoconjugados/farmacocinética , Lisina/química , Maleimidas/química , Maitansina/química , Animais , Estabilidade de Medicamentos , Camundongos , Relação Estrutura-Atividade
18.
Mol Cancer Ther ; 15(6): 1311-20, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27197308

RESUMO

A triglycyl peptide linker (CX) was designed for use in antibody -: drug conjugates (ADC), aiming to provide efficient release and lysosomal efflux of cytotoxic catabolites within targeted cancer cells. ADCs comprising anti-epithelial cell adhesion molecule (anti-EpCAM) and anti-EGFR antibodies with maytansinoid payloads were prepared using CX or a noncleavable SMCC linker (CX and SMCC ADCs). The in vitro cytotoxic activities of CX and SMCC ADCs were similar for several cancer cell lines; however, the CX ADC was more active (5-100-fold lower IC50) than the SMCC ADC in other cell lines, including a multidrug-resistant line. Both CX and SMCC ADCs showed comparable MTDs and pharmacokinetics in CD-1 mice. In Calu-3 tumor xenografts, antitumor efficacy was observed with the anti-EpCAM CX ADC at a 5-fold lower dose than the corresponding SMCC ADC in vivo Similarly, the anti-EGFR CX ADC showed improved antitumor activity over the respective SMCC conjugate in HSC-2 and H1975 tumor models; however, both exhibited similar activity against FaDu xenografts. Mechanistically, in contrast with the charged lysine-linked catabolite of SMCC ADC, a significant fraction of the carboxylic acid catabolite of CX ADC could be uncharged in the acidic lysosomes, and thus diffuse out readily into the cytosol. Upon release from tumor cells, CX catabolites are charged at extracellular pH and do not penetrate and kill neighboring cells, similar to the SMCC catabolite. Overall, these data suggest that CX represents a promising linker option for the development of ADCs with improved therapeutic properties. Mol Cancer Ther; 15(6); 1311-20. ©2016 AACR.


Assuntos
Molécula de Adesão da Célula Epitelial/antagonistas & inibidores , Receptores ErbB/antagonistas & inibidores , Imunoconjugados/administração & dosagem , Maitansina/química , Neoplasias/tratamento farmacológico , Peptídeos/síntese química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Dose Máxima Tolerável , Camundongos , Camundongos SCID , Peptídeos/química , Peptídeos/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Bioconjug Chem ; 26(11): 2261-78, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26355774

RESUMO

Antibody anilino maytansinoid conjugates (AaMCs) have been prepared in which a maytansinoid bearing an aniline group was linked through the aniline amine to a dipeptide, which in turn was covalently attached to a desired monoclonal antibody. Several such conjugates were prepared utilizing different dipeptides in the linkage including Gly-Gly, l-Val-l-Cit, and all four stereoisomers of the Ala-Ala dipeptide. The properties of AaMCs could be altered by the choice of dipeptide in the linker. Each of the AaMCs, except the AaMC bearing a d-Ala-d-Ala peptide linker, displayed more bystander killing in vitro than maytansinoid ADCs that utilize disulfide linkers. In mouse models, the anti-CanAg AaMC bearing a d-Ala-l-Ala dipeptide in the linker was shown to be more efficacious against heterogeneous HT-29 xenografts than maytansinoid ADCs that utilize disulfide linkers, while both types of the conjugates displayed similar tolerabilities.


Assuntos
Compostos de Anilina/química , Antineoplásicos Fitogênicos/química , Imunoconjugados/química , Maitansina/química , Compostos de Anilina/farmacocinética , Compostos de Anilina/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Maitansina/farmacocinética , Maitansina/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico
20.
Mol Pharm ; 12(6): 1762-73, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25826705

RESUMO

Several antibody-maytansinoid conjugates (AMCs) are in clinical trials for the treatment of various cancers. Each of these conjugates can be metabolized by tumor cells to give cytotoxic maytansinoid metabolites that can kill targeted cells. In preclinical studies in mice, the cytotoxic metabolites initially formed in vivo are further processed in the mouse liver to give several oxidized metabolic species. In this work, the primary AMC metabolites were synthesized and incubated with human liver microsomes (HLMs) to determine if human liver would likely give the same metabolites as those formed in mouse liver. The results of these HLM metabolism studies as well as the subsequent syntheses of the resulting HLM oxidation products are presented. Syntheses of the minor impurities formed during the conjugation of AMCs were also conducted to determine their cytotoxicities and to establish how these impurities would be metabolized by HLM.


Assuntos
Imunoconjugados/química , Imunoconjugados/metabolismo , Maitansina/química , Animais , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Microssomos Hepáticos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA