Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 907, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36806640

RESUMO

The recent progress in generating static pressures up to terapascal values opens opportunities for studying novel materials with unusual properties, such as metallization of hydrogen and high-temperature superconductivity. However, an evaluation of pressure above ~0.3 terapascal is a challenge. We report a universal high-pressure scale up to ~0.5 terapascal, which is based on the shift of the Raman edge of stressed diamond anvils correlated with the equation of state of Au and does not require an additional pressure sensor. According to the new scale, the pressure values are substantially lower by 20% at ~0.5 terapascal compared to the extrapolation of the existing scales. We compare the available data of H2 at the highest static pressures. We show that the onset of the proposed metallization of molecular hydrogen reported by different groups is consistent when corrected with the new scale and can be compared with various theoretical predictions.

3.
Nat Commun ; 13(1): 3194, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680889

RESUMO

In the last few years, the superconducting transition temperature, Tc, of hydrogen-rich compounds has increased dramatically, and is now approaching room temperature. However, the pressures at which these materials are stable exceed one million atmospheres and limit the number of available experimental studies. Superconductivity in hydrides has been primarily explored by electrical transport measurements, whereas magnetic properties, one of the most important characteristic of a superconductor, have not been satisfactory defined. Here, we develop SQUID magnetometry under extreme high-pressure conditions and report characteristic superconducting parameters for Im-3m-H3S and Fm-3m-LaH10-the representative members of two families of high-temperature superconducting hydrides. We determine a lower critical field Hc1 of ∼0.82 T and ∼0.55 T, and a London penetration depth λL of ∼20 nm and ∼30 nm in H3S and LaH10, respectively. The small values of λL indicate a high superfluid density in both hydrides. These compounds have the values of the Ginzburg-Landau parameter κ ∼12-20 and belong to the group of "moderate" type II superconductors, rather than being hard superconductors as would be intuitively expected from their high Tcs.

4.
Phys Rev Lett ; 126(10): 106001, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33784165

RESUMO

Extreme pressures and temperatures are known to drastically affect the chemistry of iron oxides, resulting in numerous compounds forming homologous series nFeOmFe_{2}O_{3} and the appearance of FeO_{2}. Here, based on the results of in situ single-crystal x-ray diffraction, Mössbauer spectroscopy, x-ray absorption spectroscopy, and density-functional theory+dynamical mean-field theory calculations, we demonstrate that iron in high-pressure cubic FeO_{2} and isostructural FeO_{2}H_{0.5} is ferric (Fe^{3+}), and oxygen has a formal valence less than 2. Reduction of oxygen valence from 2, common for oxides, down to 1.5 can be explained by a formation of a localized hole at oxygen sites.

5.
Nature ; 570(7759): 102-106, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31168103

RESUMO

The Earth's crust-mantle boundary, the Mohorovicic discontinuity, has been traditionally considered to be the interface between the magnetic crust and the non-magnetic mantle1. However, this assumption has been questioned by geophysical observations2,3 and by the identification of magnetic remanence in mantle xenoliths4, which suggest mantle magnetic sources. Owing to their high critical temperatures, iron oxides are the only potential sources of magnetic anomalies at mantle depths5. Haematite (α-Fe2O3) is the dominant iron oxide in subducted lithologies at depths of 300 to 600 kilometres, delineated by the thermal decomposition of magnetite and the crystallization of a high-pressure magnetite phase deeper than about 600 kilometres6. The lack of data on the magnetic properties of haematite at relevant pressure-temperature conditions, however, hinders the identification of magnetic boundaries within the mantle and their contribution to observed magnetic anomalies. Here we apply synchrotron Mössbauer source spectroscopy in laser-heated diamond anvil cells to investigate the magnetic transitions and critical temperatures in Fe2O3 polymorphs7 at pressures and temperatures of up to 90 gigapascals and 1,300 kelvin, respectively. Our results show that haematite remains magnetic at the depth of the transition zone in the Earth's mantle in cold or very cold subduction geotherms, forming a frame of deep magnetized rocks in the West Pacific region. The deep magnetic sources spatially correlate with preferred paths of the Earth's virtual geomagnetic poles during reversals8 that might not reflect the geometry of the transitional field. Rather, the paths might be an artefact caused by magnetized haematite-bearing rocks in cold subducting slabs at mid-transition zone depths. Such deep sources should be taken into account when carrying out inversions of the Earth's geomagnetic data9, and especially in studies of planetary bodies that no longer have a dynamo10, such as Mars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA