Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(2): 867-878, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38310604

RESUMO

Noise-induced hearing loss interacts with age, sex, and listening conditions to affect individuals' perception of ecologically relevant stimuli like speech. The present experiments assessed the impact of age and sex on vocalization detection by noise-exposed mice trained to detect a downsweep or complex ultrasonic vocalization in quiet or in the presence of a noise background. Daily thresholds before and following intense noise exposure were collected longitudinally and compared across several factors. All mice, regardless of age, sex, listening condition, or stimulus type showed their poorest behavioral sensitivity immediately after the noise exposure. There were varying degrees of recovery over time and across factors. Old-aged mice had greater threshold shifts and less recovery compared to middle-aged mice. Mice had larger threshold shifts and less recovery for downsweeps than for complex vocalizations. Female mice were more sensitive, had smaller post-noise shifts, and had better recovery than males. Thresholds in noise were higher and less variable than thresholds in quiet, but there were comparable shifts and recovery. In mice, as in humans, the perception of ecologically relevant stimuli suffers after an intense noise exposure, and results differ from simple tone detection findings.


Assuntos
Perda Auditiva Provocada por Ruído , Percepção da Fala , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Animais , Camundongos , Vocalização Animal , Ruído/efeitos adversos , Perda Auditiva Provocada por Ruído/etiologia , Teste do Limiar de Recepção da Fala , Limiar Auditivo
2.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613853

RESUMO

Aging leads to degeneration of the peripheral and central auditory systems, hearing loss, and difficulty understanding sounds in noise. Aging is also associated with changes in susceptibility to or recovery from damaging noise exposures, although the effects of the interaction between acute noise exposure and age on the perception of sounds are not well studied. We tested these effects in the CBA/CaJ mouse model of age-related hearing loss using operant conditioning procedures before and after noise exposure and longitudinally measured changes in their sensitivity for detecting tones in quiet or noise backgrounds. Cochleae from a subset of the behaviorally tested mice were immunolabeled to examine organ of Corti damage relative to what is expected based on aging alone. Mice tested in both quiet and noise background conditions experienced worse behavioral sensitivity immediately after noise exposure, but mice exposed at older ages generally showed greater threshold shifts and reduced recovery over time. Surprisingly, day-to-day stability in thresholds was markedly higher for mice detecting signals in the presence of a noise masker compared with detection in quiet conditions. Cochlear analysis revealed decreases in the total number of outer hair cells (OHCs) and the number of ribbons per inner cell in high-frequency regions in aged, noise-exposed mice relative to aging alone. Our findings build on previous work showing interactions between age and noise exposure and add that background noise can increase the stability of behavioral hearing sensitivity after noise damage.


Assuntos
Perda Auditiva Provocada por Ruído , Envelhecimento , Animais , Limiar Auditivo , Cóclea , Camundongos , Camundongos Endogâmicos CBA , Ruído
3.
PLoS One ; 14(8): e0222096, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31469871

RESUMO

Rats are highly social creatures that produce ultrasonic vocalizations (USVs) during social interactions. Brattleboro rats, a Long-Evans derived rat that lacks vasopressin (AVP) due to a mutation in the Avp gene, exhibit atypical social behavior, including fewer USVs with altered spectrotemporal characteristics during social interactions. It is unclear why Brattleboro rats produce atypical USVs, but one factor could be differences in auditory acuity between them and wild-type Long Evans rats with functional vasopressin. Previous studies have suggested a link between increased levels of AVP and auditory processing. Additionally, few studies have investigated sex differences in auditory perception by Long-Evans rats. Sex differences in auditory acuity have been found throughout the animal kingdom, but have not yet been demonstrated in rat audiograms. This study aimed to measure auditory brainstem response (ABR) derived audiograms for frequencies ranging from 1 to 64 kHz in male and female homozygous Brattleboro (Hom), heterozygous Brattleboro (Het), and wild-type (WT) Long-Evans rats to better understand the role of AVP and sex differences in auditory processing by these rats. We failed to detect significant differences between the ABR audiograms of Hom, Het, and WT Long-Evans rats, suggesting that varying levels of AVP do not affect auditory processing. Interestingly, males and females of all genotypes did differ in their ABR thresholds, with males exhibiting higher thresholds than females. The sex differences in auditory acuity were significant at the lowest and highest frequencies, possibly affecting the perception of USVs. These are the first known sex differences in rat audiograms.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico , Ratos Brattleboro , Ratos Long-Evans , Vasopressinas/deficiência , Animais , Biomarcadores , Feminino , Genótipo , Masculino , Ratos , Ratos Transgênicos , Fatores Sexuais , Vasopressinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA