Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(1): 013302, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725568

RESUMO

The Quite Intense Kinetics Reflectometer (QIKR) will be a general-purpose, horizontal-sample-surface neutron reflectometer. Reflectometers measure the proportion of an incident probe beam reflected from a surface as a function of wavevector (momentum) transfer to infer the distribution and composition of matter near an interface. The unique scattering properties of neutrons make this technique especially useful in the study of soft matter, biomaterials, and materials used in energy storage. Exploiting the increased brilliance of the Spallation Neutron Source Second Target Station, QIKR will collect specular and off-specular reflectivity data faster than the best existing such machines. It will often be possible to collect complete specular reflectivity curves using a single instrument setting, enabling "cinematic" operation, wherein the user turns on the instrument and "films" the sample. Samples in time-dependent environments (e.g., temperature, electrochemical, or undergoing chemical alteration) will be observed in real time, in favorable cases with frame rates as fast as 1 Hz. Cinematic data acquisition promises to make time-dependent measurements routine, with time resolution specified during post-experiment data analysis. This capability will be deployed to observe such processes as in situ polymer diffusion, battery electrode charge-discharge cycles, hysteresis loops, and membrane protein insertion into lipid layers.

2.
Nanoscale ; 11(30): 14434-14445, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31334737

RESUMO

Epitaxial graphene on SiC provides both an excellent source of high-quality graphene as well as an architecture to support its application. Although single-layer graphene on Si-face SiC has garnered extensive interest, many-layer graphene produced on C-face SiC could be significantly more robust for enabling applications. Little is known, however, about the structural properties related to the growth evolution at the buried interface for thick many-layer graphene. Using complementary X-ray scattering and neutron reflectivity as well as electron microscopy, we demonstrate that thick many-layer epitaxial graphene exhibits two vastly different length-scales of the buried interface roughness as a consequence of the Si sublimation that produces the graphene. Over long lateral length-scales the roughness is extremely large (hundreds of Å) and it varies proportionally to the number of graphene layers. In contrast, over much shorter lateral length-scales we observe an atomically abrupt interface with SiC terraces. Graphene near the buried interface exhibits a slightly expanded interlayer spacing (∼1%) and fluctuations of this spacing, indicating a tendency for disorder near the growth front. Nevertheless, Dirac cones are observed from the graphene while its domain size routinely reaches micron length-scales, indicating the persistence of high-quality graphene beginning just a short distance away from the buried interface. Discovering and reconciling the different length-scales of roughness by reflectivity was complicated by strong diffuse scattering and we provide a detailed discussion of how these difficulties were resolved. The insight from this analysis will be useful for other highly rough interfaces among broad classes of thin-film materials.

3.
Phys Rev Lett ; 122(3): 037601, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30735408

RESUMO

The electronic reconstruction occurring at oxide interfaces may be the source of interesting device concepts for future oxide electronics. Among oxide devices, multiferroic tunnel junctions are being actively investigated as they offer the possibility to modulate the junction current by independently controlling the switching of the magnetization of the electrodes and of the ferroelectric polarization of the barrier. In this Letter, we show that the spin reconstruction at the interfaces of a La_{0.7}Sr_{0.3}MnO_{3}/BaTiO_{3}/La_{0.7}Sr_{0.3}MnO_{3} multiferroic tunnel junction is the origin of a spin filtering functionality that can be turned on and off by reversing the ferroelectric polarization. The ferroelectrically controlled interface spin filter enables a giant electrical modulation of the tunneling magnetoresistance between values of 10% and 1000%, which could inspire device concepts in oxides-based low dissipation spintronics.

4.
J Phys Condens Matter ; 29(5): 055801, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-27911887

RESUMO

We characterise the magnetic state of highly-textured, sputter deposited erbium for a film of thickness 6 nm. Using polarised neutron reflectometry it is found that the film has a high degree of magnetic disorder, and we present some evidence that the film's local magnetic state is consistent with bulk-like spiral magnetism. This, combined with complementary characterisation techniques, show that thin film erbium is a strong candidate material for incorporation into device structures.

5.
J Phys Condens Matter ; 23(41): 416006, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21959945

RESUMO

We report the structural and magnetic characterization of sputter deposited epitaxial Ho. We present room temperature characterization by atomic force microscopy and x-ray diffraction and temperature dependent characterization by x-ray diffraction and neutron diffraction. The data show the onset and change of the magnetic state as a function of temperature. Films of different thickness, exhibiting signs of differing epitaxially induced strain, tend towards specific spin-slip phases in the low temperature regime. The more highly strained thinnest films tend towards values with a longer magnetic wavelength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA