Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 53(1): 12, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33211202

RESUMO

Foot and mouth disease (FMD) is recognized as an endemic disease in Thailand and throughout other countries in Southeast Asia. The underreporting of FMD outbreaks has affected the true status of the disease. This study aimed to determine the number of dairy farms in Chiang Mai that had experienced FMD outbreaks (FMD outbreak farm) during 2015-2016 using capture-recapture (CR) methods. Two independent FMD outbreak data sources including data from the livestock authorities and survey questionnaires were analyzed using Chapman estimator and Chao estimator. Results showed that the estimated number of FMD outbreak farms was 264 (95% CI = 250, 277) and 273 (95% CI = 259, 292) farms based on the Chapman estimator and Chao estimator, respectively. The estimated prevalence of FMD corresponding to the Chapman estimator was lower than the Chao estimator. The active approach of the survey method offered a higher degree of sensitivity compared to the passive method used by the livestock authorities. Estimations from the CR method provided an upper bound for the true number of outbreak farms. This study demonstrated the use of the CR method to estimate the true status of FMD outbreaks. Our proposed approach can potentially be used as a tool to enhance the accuracy and sensitivity of established monitoring and surveillance systems.


Assuntos
Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Febre Aftosa/epidemiologia , Animais , Bovinos , Indústria de Laticínios , Feminino , Modelos Teóricos , Prevalência , Tailândia/epidemiologia
2.
Vet Sci ; 7(3)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961664

RESUMO

Animal movement is one of the most important risk factors for outbreaks of foot and mouth disease (FMD) in cattle. Likewise, FMD can spread to cattle farms via vehicles contaminated with the FMD virus. In Northern Thailand, the movement of manure transport vehicles and the circulation of manure bags among cattle farms are considered as potential risk factors for FMD outbreaks among cattle farms. This study aimed to determine the characteristics and movement patterns of manure tradesman using social network analysis. A structured questionnaire was used to identify sequences of farms routinely visited by each tradesman. A total of 611 participants were interviewed, including 154 beef farmers, 407 dairy farmers, 36 tradesmen, and 14 final purchasers. A static weighted directed one-mode network was constructed, and the network metrics were measured. For the manure tradesman-cattle farmer network, the tradesman possessed the highest value of in- and out-degree centralities (71 and 4), betweenness centralities (114.5), and k-core values (2). These results indicated that the tradesman had a high frequency of farm visits and had a remarkable influence on other persons (nodes) in the network. The movement of vehicles ranged from within local districts, among districts, or even across provinces. Unclean manure plastic bags were circulated among cattle farms. Therefore, both vehicles and the bags may act as a disease fomite. Interestingly, no recording system was implemented for the movement of manure transport vehicles. This study suggested that the relevant authority and stakeholders should be aware of the risk of FMD spreading within this manure trading network. The findings from this study can be used as supporting data that can be used for enhancing FMD control measures, especially for FMD endemic areas.

3.
BMC Vet Res ; 16(1): 170, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32487166

RESUMO

BACKGROUND: Foot and mouth disease (FMD) is a highly infectious and contagious febrile vesicular disease of cloven-hoofed livestock with high socio-economic consequences globally. In Thailand, FMD is endemic with 183 and 262 outbreaks occurring in the years 2015 and 2016, respectively. In this study, we aimed to assess the spatiotemporal distribution of FMD outbreaks among cattle in Chiang Mai and Lamphun provinces in the northern part of Thailand during the period of 2015-2016. A retrospective space-time scan statistic including a space-time permutation (STP) and the Poisson and Bernoulli models were applied in order to detect areas of high incidence of FMD. RESULTS: Results have shown that 9 and 8 clusters were identified by the STP model in 2015 and 2016, respectively, whereas 1 and 3 clusters were identified by the Poisson model, and 3 and 4 clusters were detected when the Bernoulli model was applied for the same time period. In 2015, the most likely clusters were observed in Chiang Mai and these had a minimum radius of 1.49 km and a maximum radius of 20 km. Outbreaks were clustered in the period between the months of May and October of 2015. The most likely clusters in 2016 were observed in central Lamphun based on the STP model and in the eastern area of Chiang Mai by the Poisson and Bernoulli models. The cluster size of the STP model (8.51 km) was smaller than those of the Poisson and Bernoulli models (> 20 km). The cluster periods in 2016 were approximately 7 months, while 4 months and 1 month were identified by the Poisson, Bernoulli and STP models respectively. CONCLUSIONS: The application of three models provided more information for FMD outbreak epidemiology. The findings from this study suggest the use of three different space-time scan models for the investigation process of outbreaks along with the follow-up process to identify FMD outbreak clusters. Therefore, active prevention and control strategies should be implemented in the areas that are most susceptible to FMD outbreaks.


Assuntos
Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Febre Aftosa/epidemiologia , Animais , Bovinos , Doenças dos Bovinos/virologia , Vírus da Febre Aftosa/isolamento & purificação , Modelos Estatísticos , Estudos Retrospectivos , Estações do Ano , Análise Espaço-Temporal , Tailândia/epidemiologia
4.
Animals (Basel) ; 10(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204373

RESUMO

Foot and mouth disease (FMD) is considered a highly contagious transboundary disease of cloven-hoofed animals. FMD has become endemic to northern Thailand over the past decade. In 2016, FMD outbreaks were recorded in three districts in Chiang Mai Province. The objective of this study was to determine the farm-level risk factors associated with FMD outbreaks. This study was conducted via a face-to-face interview questionnaire survey at 140 FMD outbreak farms and 307 control farms. Univariable and multivariable logistic regression analyses were used to determine the association between potential risk factors and FMD outbreaks. The final logistic regression model identified factors associated with FMD outbreaks including the purchasing of a new cow without following quarantine protocol (odds ratio = 2.41, 95%CI = 1.45, 4.05), farms located near shared cattle grazing areas in a 10 km radius (OR = 1.83, 95%CI =1.11, 3.02), FMD vaccination administration by non-official livestock personnel (OR = 2.52, 95%CI = 1.39, 4.58), farms located in a 5 km radius of cattle abattoirs (OR = 1.83, 95%CI = 0.99, 3.40) and no history of FMD outbreaks over the previous 12 months in districts where farms were located (OR = 0.44, 95%CI = 0.22, 0.86). The risk factors identified in this study were related to farm biosecurity, FMD vaccination administration and distance from the farms to risk areas. Therefore, it was important to strengthen on-farm biosecurity and to improve farm management practices in order to reduce incidences of FMD at the farm level. Education or training programs for dairy farmers that would enhance knowledge and practices in relation to the assessed topics are needed.

5.
Geospat Health ; 15(2)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33461277

RESUMO

Dengue is the worldwide most important mosquito-borne viral disease in humans. A large dengue outbreak occurred in Chiang Mai, Thailand in 2013. The aims of this study were to describe the epidemiology of this outbreak and determine the spatio-temporal pattern in the sub-district with the highest number of dengue cases. Data on patients, including date of illness, were obtained from the Chiang Mai Provincial Public Health Center and analyzed descriptively using R statistical software. The geographic location of patients' residences was determined from available geographical information databases supplemented with coordinated data collection in the field. A space-time permutation model from SaTScan™ was used to determine disease clusters corresponding to space and time. Results showed that Muang District, the centre of the province, had a higher number of cases than the other 25 districts. The Suthep subdistrict, part of Muang District, had most of the patients: 625 subjects distributed between 213 residences. The space-time analysis identified a primary cluster and 7 secondary clusters in different time periods. The primary cluster had 128 patients in a period of approximately 3 months. The number of patients in the secondary clusters ranged between 7 and 65. Most of the clusters occurred in densely populated areas during June and July (the rainy season). The finding from this study may support health agencies to plan surveillance campaigns for people at specified local areas with a high incidence of the disease.


Assuntos
Dengue/epidemiologia , Surtos de Doenças , Análise Espaço-Temporal , Animais , Humanos , Incidência , Tailândia/epidemiologia
6.
JMIR Public Health Surveill ; 4(1): e25, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563079

RESUMO

BACKGROUND: Aiming for early disease detection and prompt outbreak control, digital technology with a participatory One Health approach was used to create a novel disease surveillance system called Participatory One Health Disease Detection (PODD). PODD is a community-owned surveillance system that collects data from volunteer reporters; identifies disease outbreak automatically; and notifies the local governments (LGs), surrounding villages, and relevant authorities. This system provides a direct and immediate benefit to the communities by empowering them to protect themselves. OBJECTIVE: The objective of this study was to determine the effectiveness of the PODD system for the rapid detection and control of disease outbreaks. METHODS: The system was piloted in 74 LGs in Chiang Mai, Thailand, with the participation of 296 volunteer reporters. The volunteers and LGs were key participants in the piloting of the PODD system. Volunteers monitored animal and human diseases, as well as environmental problems, in their communities and reported these events via the PODD mobile phone app. LGs were responsible for outbreak control and provided support to the volunteers. Outcome mapping was used to evaluate the performance of the LGs and volunteers. RESULTS: LGs were categorized into one of the 3 groups based on performance: A (good), B (fair), and C (poor), with the majority (46%,34/74) categorized into group B. Volunteers were similarly categorized into 4 performance groups (A-D), again with group A showing the best performance, with the majority categorized into groups B and C. After 16 months of implementation, 1029 abnormal events had been reported and confirmed to be true reports. The majority of abnormal reports were sick or dead animals (404/1029, 39.26%), followed by zoonoses and other human diseases (129/1029, 12.54%). Many potentially devastating animal disease outbreaks were detected and successfully controlled, including 26 chicken high mortality outbreaks, 4 cattle disease outbreaks, 3 pig disease outbreaks, and 3 fish disease outbreaks. In all cases, the communities and animal authorities cooperated to apply community contingency plans to control these outbreaks, and community volunteers continued to monitor the abnormal events for 3 weeks after each outbreak was controlled. CONCLUSIONS: By design, PODD initially targeted only animal diseases that potentially could emerge into human pandemics (eg, avian influenza) and then, in response to community needs, expanded to cover human health and environmental health issues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA