Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Molecules ; 28(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630229

RESUMO

A wide range of bioactive compounds with potential medical applications are produced by members of the genus Streptomyces. A new actinomycete producer of the antibiotic γ-rubromycin, designated TA 36, was isolated from an alpine soil sample collected in Peru (Machu Picchu). Morphological, physiological and biochemical characteristics of the strain, together with data obtained via phylogenetic analysis and MALDI-TOF MS, were used for the correct identification of the isolate. The isolate TA 36 showed morphological characteristics that were consistent with its classification within the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequences showed that the TA 36 strain was most similar to S. iakyrus and S. violaceochromogenes with 99% similarity. Phylogenetic analysis together with the profile of whole cell proteins indicated that the strain tested could be identified as S. iakyrus TA 36. The crude extract Ext.5333.TA 36 showed various effects against the tested organisms with strong antimicrobial activity in the growth of Staphylococcus aureus (Newman) (MIC value of 0.00195 µg/µL). HPLC fractionation and LC/MS analysis of the crude extract led to the identification of the quinone antibiotic γ-rubromycin, a promising antitumour and antibacterial antibiotic. To the best of our knowledge, there is currently no report on the production of γ-rubromycin by S. iakyrus. Therefore, this study suggests S. iakyrus TA 36 as the first-reported source of this unique bioactive secondary metabolite.


Assuntos
Quinonas , Streptomyces , Filogenia , RNA Ribossômico 16S/genética , Quinonas/farmacologia , Antibacterianos/farmacologia
2.
Braz. J. Pharm. Sci. (Online) ; 55: e17249, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1055327

RESUMO

In the present study we reported the antimicrobial activity of actinomycetes isolated from aridic soil sample collected in Karoo, South Africa. Eighty-six actinomycete strains were isolated and purified, out of them thirty-four morphologically different strains were tested for antimicrobial activity. Among 35 isolates, 10 (28.57%) showed both antibacterial and antifungal activity. The ethyl acetate extract of strain KRG-1 showed the strongest antimicrobial activity and therefore was selected for further investigation. The almost complete nucleotide sequence of the 16S rRNA gene as well as distinctive matrix-assisted laser desorption/ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) profile of whole-cell proteins acquired for strain KRG-1 led to the identification of Streptomyces antibioticus KRG-1 (GenBank accession number: KX827270). The ethyl acetate extract of KRG-1 was fractionated by HPLC method against the most suppressed bacterium Staphylococcus aureus (Newman). LC//MS analysis led to the identification of the active peak that exhibited UV-VIS maxima at 442 nm and the ESI-HRMS spectrum showing the prominent ion clusters for [M-H2O+H]+ at m/z 635.3109 and for [M+Na]+ at m/z 1269.6148. This information could be assigned to chromopeptide lactone antibiotic - actinomycin. Our results suggest that unexplored soils could be an interesting source for exploring antibacterial secondary metabolites.


Assuntos
Solo , Actinobacteria/classificação , Dactinomicina/análise , Espectrometria de Massas/métodos , Streptomyces antibioticus , RNA Ribossômico 16S , Cromatografia Líquida de Alta Pressão/métodos , Métodos
3.
Braz. j. microbiol ; 49(4): 816-822, Oct.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974289

RESUMO

ABSTRACT Fifty seven soil-borne actinomycete strains were assessed for the antibiotic production. Two of the most active isolates, designed as Streptomyces ST-13 and DK-15 exhibited a broad range of antimicrobial activity and therefore they were selected for HPLC fractionation against the most suppressed bacteria Staphylococcus aureus (ST-13) and Chromobacterium violaceum (DK-15). LC/MS analysis of extracts showed the presence of polyketides factumycin (DK15) and tetrangomycin (ST13). The taxonomic position of the antibiotic-producing actinomycetes was determined using a polyphasic approach. Phenotypic characterization and 16S rRNA gene sequence analysis of the isolates matched those described for members of the genus Streptomyces. DK-15 strain exhibited the highest 16S rRNA gene sequence similarity to Streptomyces globosus DSM-40815 (T) and Streptomyces toxytricini DSM-40178 (T) and ST-13 strain to Streptomyces ederensis DSM-40741 (T) and Streptomyces phaeochromogenes DSM-40073 (T). For the proper identification, MALDI-TOF/MS profile of whole-cell proteins led to the identification of S. globosus DK-15 (accession number: KX527570) and S. ederensis ST13 (accession number: KX527568). To our knowledge, there is no report about the production of these antibiotics by S.globosus and S. ederensis, thus isolates DK15 and ST13 identified as S. globosus DK-15 and S.ederensis ST-13 can be considered as new sources of these unique antibacterial metabolites.


Assuntos
Streptomyces/isolamento & purificação , Streptomyces/metabolismo , Antibacterianos/biossíntese , Filogenia , Piridonas/metabolismo , Microbiologia do Solo , Streptomyces/classificação , Streptomyces/genética , Benzo(a)Antracenos/metabolismo , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
4.
Artigo em Inglês | MEDLINE | ID: mdl-29842823

RESUMO

The main objective of this study was using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for assembling of DSM (German Collection of Microorganisms) Streptomyces spectral database and identification of wild Streptomyces cultures, which were clustered by MALDI-TOF Biotyper OC software as well as for teracycline detection by observing of obtained spectra using flexAnalysis software. Production of tetracycline was confirmed by thin-layer chromatography. Presence of tetracycline mass spectrum was verified by several tetracycline producers (Streptomyces aureofaciens LMG 5968, S. aureofaciens 84/25, and S. aureofaciens BMK) and by pure tetracycline mass. Our results showed that it is possible to use MALDI-TOF MS for identification of tetracycline producers within Streptomyces genera by several easy steps. The purpose of this study was to establish cheap and quick detection of tetracycline producers.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Streptomyces/isolamento & purificação , Streptomyces/metabolismo , Tetraciclina/metabolismo , Bases de Dados Factuais , Ensaios de Triagem em Larga Escala/métodos , Humanos , Software , Tetraciclina/química , Tetraciclina/isolamento & purificação
5.
Braz J Microbiol ; 49(4): 816-822, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29705162

RESUMO

Fifty seven soil-borne actinomycete strains were assessed for the antibiotic production. Two of the most active isolates, designed as Streptomyces ST-13 and DK-15 exhibited a broad range of antimicrobial activity and therefore they were selected for HPLC fractionation against the most suppressed bacteria Staphylococcus aureus (ST-13) and Chromobacterium violaceum (DK-15). LC/MS analysis of extracts showed the presence of polyketides factumycin (DK15) and tetrangomycin (ST13). The taxonomic position of the antibiotic-producing actinomycetes was determined using a polyphasic approach. Phenotypic characterization and 16S rRNA gene sequence analysis of the isolates matched those described for members of the genus Streptomyces. DK-15 strain exhibited the highest 16S rRNA gene sequence similarity to Streptomyces globosus DSM-40815 (T) and Streptomyces toxytricini DSM-40178 (T) and ST-13 strain to Streptomyces ederensis DSM-40741 (T) and Streptomyces phaeochromogenes DSM-40073 (T). For the proper identification, MALDI-TOF/MS profile of whole-cell proteins led to the identification of S. globosus DK-15 (accession number: KX527570) and S. ederensis ST13 (accession number: KX527568). To our knowledge, there is no report about the production of these antibiotics by S.globosus and S. ederensis, thus isolates DK15 and ST13 identified as S. globosus DK-15 and S.ederensis ST-13 can be considered as new sources of these unique antibacterial metabolites.


Assuntos
Antibacterianos/biossíntese , Streptomyces/isolamento & purificação , Streptomyces/metabolismo , Técnicas de Tipagem Bacteriana , Benzo(a)Antracenos/metabolismo , DNA Bacteriano/genética , Filogenia , Piridonas/metabolismo , Microbiologia do Solo , Streptomyces/classificação , Streptomyces/genética
6.
J Adv Pharm Technol Res ; 8(2): 46-51, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28516055

RESUMO

Microbiological investigation of unexplored ecosystems is crucial for discovering of antibiotic producing actinomycetes. The present study was conducted to determine antimicrobial activity and identify the most active strains. Actinomycetes were isolated using the spread plate technique following by serial dilution of samples on starch casein agar. The screening method consists of primary and secondary testing. The most active isolates were identified based on molecular and cultural methods. 42 out of 66 isolates displayed antimicrobial potential. 63% exhibited antibacterial activity, 16% antifungal activity, and 16% displayed both activities. Identified isolates, Streptomyces scabrisporus, Streptomyces sparsogenes, Streptomyces misakiensis, Streptomyces cirratus, Streptomyces lincolnensis, Streptomyces endophyticus, Streptomyces chartreusis, and Streptomyces alboniger showed a broad spectrum of enzymatic activities. The results indicated that these isolates may serve as antibiotic and enzyme-producing microbes.

7.
Folia Microbiol (Praha) ; 62(4): 305-315, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28161814

RESUMO

Myxobacteria, a group of antimicrobial producing bacteria, have been successfully cultured and characterized from ten soil samples collected from different parts of Slovakia. A total of 79 myxobacteria belonging to four genera (Myxococcus, Corallococcus, Sorangium, and Polyangium) were isolated based on aspects of their life cycle. Twenty-five of them were purified, fermented, and screened for antimicrobial activities against 11 test microorganisms. Results indicated that crude extracts showed more significant activities against Gram-positive than against Gram-negative bacteria or fungi. Based on a higher degree and broader range of antimicrobial production, the two most potential extracts (K9-5, V3-1) were selected for HPLC fractionation against Micrococcus luteus and Staphylococcus aureus and LC/MS analysis of potential antibiotic metabolites. The analysis resulted in the identification of polyketide-peptide antibiotics, namely corallopyronin A and B (K9-5) and myxalamid B and C (V3-1), which were responsible for important Gram-positive activity in the observed strains. A sequence similarity search through BLAST revealed that these strains showed the highest sequence similarity to Corallococcus coralloides (K9-5, NCBI accession number KX256198) and Myxococcus xanthus (V3-1, NCBI accession number KX256197). Although screening of myxobacteria is laborious, due to difficulties in isolating cultures, this research represented the first report covering the isolation and cultivation of this challenging bacterial group from Slovakian soils as well as the screening of their antimicrobial activity, cultural identification, and secondary metabolite identification.


Assuntos
Antibacterianos/metabolismo , Myxococcales/química , Policetídeos/metabolismo , Microbiologia do Solo , Antibacterianos/química , Antibacterianos/farmacologia , Micrococcus luteus/efeitos dos fármacos , Myxococcales/genética , Myxococcales/isolamento & purificação , Myxococcales/metabolismo , Filogenia , Policetídeos/química , Policetídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos
8.
Braz. arch. biol. technol ; 59: e16160274, 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951320

RESUMO

ABSTRACT The strain no. VY46 was isolated from agricultural soil of Slovak republic and tested for potential antimicrobial activity against various human pathogens. On the basis of results, strain VY46 significantly inhibited growth of yeast Candida albicans and therefore was used for further characterization. In order to explore the potential bioactivities, extract of the fermented broth culture was prepared with organic solvent extraction method. The ethylacetate extract was subjected to HPLC fractionation against Candida albicans and followed by LC/MS analysis for potential production of anticandidal substances. The analysis resulted in the identification of two antimycins antibiotics, which may be responsible for important anticandidal activity of the strain. On the basis of liquid chromatography and mass spectrometry the antibiotics were identified as Urauchimycin A and Kitamycin A. According tothe results from cultural, morphological, physiological, biochemical and 16S rRNA gene sequence methods, the strain was identified as Streptomyces albidoflavus. In addition, neighbor-joining phylogenetic tree confirmed the relationships of this strain to other members of Streptomyces genera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA