Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 72(6): 585-95, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20054610

RESUMO

Lysine residue 9 of histone H3 can either be acetylated or mono-, di-, or tri-methylated. These epigenetic states have a diverse impact on regulating gene transcriptional activity and chromatin organization. H3K9ac is invariably correlated with transcriptional activation, whereas H3K9me2 has been reported to be mainly located in constitutive heterochromatin in Arabidopsis. Here, we present epigenetic landscapes for histone H3 lysine 9 acetylation (H3K9ac) and dimethylation (H3K9me2) in Arabidopsis seedlings. The results show that H3K9ac targeted 5,206 non-transposable element (non-TE) genes and 321 transposable elements (TEs), whereas H3K9me2 targeted 2,281 TEs and 1,112 non-TE genes. H3K9ac was biased towards the 5' end of genes and peaked at the ATG position, while H3K9me2 tended to span the entire gene body. H3K9ac correlated with high gene expression, while H3K9me2 correlated with low expression. Analyses of H3K9ac and H3K9me2 with the available datasets of H3K27me3 and DNA methylation revealed a correlation between the occurrence of multiple epigenetic modifications and gene expression. Genes with H3K9ac alone were actively transcribed, while genes that were also modified by either H3K27me3 or DNA methylation showed a lower expression level, suggesting that a combination of repressive marks weakened the positive regulatory effect of H3K9ac. Furthermore, we observed a significant increase of the H3K9ac modification level of selected target genes in hda19 (histone deacetylase 19) mutant seedlings, which indicated that HDA19 plays an important role in regulating the level of H3K9ac and thereby influencing the transcriptional activity in young seedlings.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Histonas/metabolismo , Acetilação , Proteínas de Arabidopsis/genética , Elementos de DNA Transponíveis , Epigênese Genética , Genes de Plantas , Histona Desacetilases/genética , Metilação , Mutação , Ativação Transcricional
2.
Plant Cell ; 21(12): 3732-48, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20008096

RESUMO

Although landscapes of several histone marks are now available for Arabidopsis thaliana and Oryza sativa, such profiles remain static and do not provide information about dynamic changes of plant epigenomes in response to developmental or environmental cues. Here, we analyzed the effects of light on four histone modifications (acetylation and trimethylation of lysines 9 and 27 on histone H3: H3K9ac, H3K9me3, H3K27ac, and H3K27me3, respectively). Our genome-wide profiling of H3K9ac and H3K27ac revealed that these modifications are nontransposable element gene-specific. By contrast, we found that H3K9me3 and H3K27me3 target nontransposable element genes, but also intergenic regions and transposable elements. Specific light conditions affected the number of modified regions as well as the overall correlation strength between the presence of specific modifications and transcription. Furthermore, we observed that acetylation marks not only ELONGATED HYPOCOTYL5 and HY5-HOMOLOG upon deetiolation, but also their downstream targets. We found that the activation of photosynthetic genes correlates with dynamic acetylation changes in response to light, while H3K27ac and H3K27me3 potentially contribute to light regulation of the gibberellin metabolism. Thus, this work provides a dynamic portrait of the variations in histone modifications in response to the plant's changing light environment and strengthens the concept that histone modifications represent an additional layer of control for light-regulated genes involved in photomorphogenesis.


Assuntos
Arabidopsis/efeitos da radiação , Histonas/metabolismo , Luz , Processamento de Proteína Pós-Traducional , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Imunoprecipitação da Cromatina , Cromossomos de Plantas , Elementos de DNA Transponíveis , DNA Intergênico/metabolismo , DNA de Plantas/metabolismo , Eucromatina/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Giberelinas/biossíntese , Metilação , Análise de Sequência com Séries de Oligonucleotídeos , Fotossíntese , Plântula/genética , Plântula/metabolismo , Plântula/efeitos da radiação
3.
BMC Plant Biol ; 8: 86, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18671872

RESUMO

BACKGROUND: Lipocalins are a large and diverse family of small, mostly extracellular proteins implicated in many important functions. This family has been studied in bacteria, invertebrate and vertebrate animals but little is known about these proteins in plants. We recently reported the identification and molecular characterization of the first true lipocalins from plants, including the Apolipoprotein D ortholog AtTIL identified in the plant model Arabidopsis thaliana. This study aimed to determine its physiological role in planta. RESULTS: Our results demonstrate that the AtTIL lipocalin is involved in modulating tolerance to oxidative stress. AtTIL knock-out plants are very sensitive to sudden drops in temperature and paraquat treatment, and dark-grown plants die shortly after transfer to light. These plants accumulate a high level of hydrogen peroxide and other ROS, which causes an oxidative stress that is associated with a reduction in hypocotyl growth and sensitivity to light. Complementation of the knock-out plants with the AtTIL cDNA restores the normal phenotype. On the other hand, overexpression enhances tolerance to stress caused by freezing, paraquat and light. Moreover, this overexpression delays flowering and maintains leaf greenness. Microarray analyses identified several differentially-regulated genes encoding components of oxidative stress and energy balance. CONCLUSION: This study provides the first functional evidence that a plant lipocalin is involved in modulating tolerance to oxidative stress. These findings are in agreement with recently published data showing that overexpression of ApoD enhances tolerance to oxidative stress and increases life span in mice and Drosophila. Together, the three papers strongly support a similar function of lipocalins in these evolutionary-distant species.


Assuntos
Apolipoproteínas D/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lipocalinas/metabolismo , Estresse Oxidativo , Homologia de Sequência de Aminoácidos , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Flores/fisiologia , Congelamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Peróxido de Hidrogênio/metabolismo , Hipocótilo/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Fatores de Tempo
4.
Plant Physiol ; 147(4): 2070-83, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18550682

RESUMO

Here, we analyzed the effects of light regulation on four selected histone modifications (H3K4me3, H3K9ac, H3K9me2, and H3K27me3) and the relationship of these histone modifications with the expression of representative light-regulated genes. We observed that the histone modifications examined and gene transcription were cooperatively regulated in response to changing light environments. Using H3K9ac as an example, our analysis indicated that histone modification patterns are set up very early and are relatively stable during Arabidopsis (Arabidopsis thaliana) seedling development. Distinct photoreceptor systems are responsible for mediating the effects of different light qualities on histone modifications. Moreover, we found that light regulation of gene-specific histone modifications involved the known photomorphogenesis-related proteolytic system defined by the pleiotropic CONSTITUTIVE PHOTOMORPHOGENIC/DE-ETOLIATED proteins and histone modification enzymes (such as HD1). Furthermore, our data suggest that light-regulated changes in histone modifications might be an intricate part of light-controlled gene transcription. Thus, it is possible that variations in histone modifications are an important physiological component of plant responses to changing light environments.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Histonas/metabolismo , Luz , Acetilação , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Escuridão , Perfilação da Expressão Gênica , Histona Desacetilases/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , RNA Mensageiro/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos da radiação
5.
Plant Cell ; 20(1): 152-67, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18223036

RESUMO

A subset of WD40 proteins that contain a DWD motif (for DDB1 binding WD40) is reported to act as substrate receptors for DDB1-CUL4-ROC1 (for Damaged DNA Binding 1-Cullin 4-Regulator of Cullins 1) based E3 ubiquitin ligases in humans. Here, we report 85 Arabidopsis thaliana and 78 rice (Oryza sativa) proteins containing the conserved 16-amino acid DWD motif. We show by yeast two-hybrid and in vivo coimmunoprecipitation that 11 Arabidopsis DWD proteins directly interact with DDB1 and thus may serve as substrate receptors for the DDB1-CUL4 machinery. We further examine whether the DWD protein PRL1 (for Pleiotropic Regulatory Locus 1) may act as part of a CUL4-based E3 ligase. PRL1 directly interacts with DDB1, and prl1 and cul4cs mutants exhibited similar phenotypes, including altered responses to a variety of stimuli. Moreover, AKIN10 (for Arabidopsis SNF1 Kinase Homolog 10) was degraded more slowly in cell extracts of prl1 and cul4cs than in cell extracts of the wild type. Thus, both genetic and biochemical analyses support the conclusion that PRL1 is the substrate receptor of a CUL4-ROC1-DDB1-PRL1 E3 ligase involved in the degradation of AKIN10. This work adds a large new family to the current portfolio of plant E3 ubiquitin ligases.


Assuntos
Motivos de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Oryza/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ácido Abscísico/farmacologia , Antocianinas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Carboidratos/farmacologia , Cotilédone/efeitos dos fármacos , Cotilédone/metabolismo , Proteínas Culina/metabolismo , Citocininas/farmacologia , Genes de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação/genética , Proteínas Nucleares/metabolismo , Oryza/citologia , Oryza/efeitos dos fármacos , Fenótipo , Ligação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA